Determinants

D. H. Luecking

05/07 Feb 2024

If we have reason to believe an $n \times n$ system has a unique solution, is there a formula for that solution?

If we have reason to believe an $n \times n$ system has a unique solution, is there a formula for that solution? Here is a what happens when $n=1$:

$$
a x_{1}=b, \quad x_{1}=\frac{b}{a}
$$

If we have reason to believe an $n \times n$ system has a unique solution, is there a formula for that solution? Here is a what happens when $n=1$:

$$
a x_{1}=b, \quad x_{1}=\frac{b}{a}
$$

We know it has a unique solution if $a \neq 0$.

If we have reason to believe an $n \times n$ system has a unique solution, is there a formula for that solution? Here is a what happens when $n=1$:

$$
a x_{1}=b, \quad x_{1}=\frac{b}{a}
$$

We know it has a unique solution if $a \neq 0$. Now consider

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=b_{2}
\end{aligned}
$$

If we have reason to believe an $n \times n$ system has a unique solution, is there a formula for that solution? Here is a what happens when $n=1$:

$$
a x_{1}=b, \quad x_{1}=\frac{b}{a}
$$

We know it has a unique solution if $a \neq 0$. Now consider

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=b_{2}
\end{aligned}
$$

If we multiply the first equation by a_{21} and the second equation by a_{11} and subtract the first from the second we get

$$
\left(a_{11} a_{22}-a_{21} a_{12}\right) x_{2}=b_{2} a_{11}-b_{1} a_{21} \quad \text { and so, } \quad x_{2}=\frac{b_{2} a_{11}-b_{1} a_{21}}{a_{11} a_{22}-a_{21} a_{12}}
$$

If we have reason to believe an $n \times n$ system has a unique solution, is there a formula for that solution? Here is a what happens when $n=1$:

$$
a x_{1}=b, \quad x_{1}=\frac{b}{a}
$$

We know it has a unique solution if $a \neq 0$. Now consider

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=b_{2}
\end{aligned}
$$

If we multiply the first equation by a_{21} and the second equation by a_{11} and subtract the first from the second we get

$$
\left(a_{11} a_{22}-a_{21} a_{12}\right) x_{2}=b_{2} a_{11}-b_{1} a_{21} \text { and so, } x_{2}=\frac{b_{2} a_{11}-b_{1} a_{21}}{a_{11} a_{22}-a_{21} a_{12}}
$$

We can do a similar trick to eliminate x_{2} from the first equation and get $x_{1}=\frac{b_{1} a_{22}-b_{2} a_{12}}{a_{11} a_{22}-a_{21} a_{12}}$.

If we have reason to believe an $n \times n$ system has a unique solution, is there a formula for that solution? Here is a what happens when $n=1$:

$$
a x_{1}=b, \quad x_{1}=\frac{b}{a}
$$

We know it has a unique solution if $a \neq 0$. Now consider

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=b_{2}
\end{aligned}
$$

If we multiply the first equation by a_{21} and the second equation by a_{11} and subtract the first from the second we get

$$
\left(a_{11} a_{22}-a_{21} a_{12}\right) x_{2}=b_{2} a_{11}-b_{1} a_{21} \text { and so, } x_{2}=\frac{b_{2} a_{11}-b_{1} a_{21}}{a_{11} a_{22}-a_{21} a_{12}}
$$

We can do a similar trick to eliminate x_{2} from the first equation and get $x_{1}=\frac{b_{1} a_{22}-b_{2} a_{12}}{a_{11} a_{22}-a_{21} a_{12}}$. This works if $a_{11} a_{22}-a_{21} a_{12} \neq 0$.

The denominator $a_{11} a_{22}-a_{21} a_{12}$ is called the determinant of the 2×2 system. Historically, this was because it determines whether the system had a unique solution.

The denominator $a_{11} a_{22}-a_{21} a_{12}$ is called the determinant of the 2×2 system. Historically, this was because it determines whether the system had a unique solution.

This same sort of thing can be done for larger $n \times n$ systems, but the formulas quickly get way out of hand.

The denominator $a_{11} a_{22}-a_{21} a_{12}$ is called the determinant of the 2×2 system. Historically, this was because it determines whether the system had a unique solution.
This same sort of thing can be done for larger $n \times n$ systems, but the formulas quickly get way out of hand. For 3×3 systems, the variables can again be solved for as fractions with this denominator:
$D=a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32}+a_{12} a_{23} a_{31}-a_{12} a_{21} a_{33}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}$

The denominator $a_{11} a_{22}-a_{21} a_{12}$ is called the determinant of the 2×2 system. Historically, this was because it determines whether the system had a unique solution.
This same sort of thing can be done for larger $n \times n$ systems, but the formulas quickly get way out of hand. For 3×3 systems, the variables can again be solved for as fractions with this denominator:
$D=a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32}+a_{12} a_{23} a_{31}-a_{12} a_{21} a_{33}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}$
The numerators are similarly complex.

The denominator $a_{11} a_{22}-a_{21} a_{12}$ is called the determinant of the 2×2 system. Historically, this was because it determines whether the system had a unique solution.
This same sort of thing can be done for larger $n \times n$ systems, but the formulas quickly get way out of hand. For 3×3 systems, the variables can again be solved for as fractions with this denominator:
$D=a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32}+a_{12} a_{23} a_{31}-a_{12} a_{21} a_{33}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}$
The numerators are similarly complex. For 4×4 systems there are 24 terms with four factors in each term.

The denominator $a_{11} a_{22}-a_{21} a_{12}$ is called the determinant of the 2×2 system. Historically, this was because it determines whether the system had a unique solution.
This same sort of thing can be done for larger $n \times n$ systems, but the formulas quickly get way out of hand. For 3×3 systems, the variables can again be solved for as fractions with this denominator:
$D=a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32}+a_{12} a_{23} a_{31}-a_{12} a_{21} a_{33}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}$
The numerators are similarly complex. For 4×4 systems there are 24 terms with four factors in each term.
In the formula for D above, each term is a product $a_{1 i} a_{2 j} a_{3 k}$ where i, j, k is a permutation of $1,2,3$.

The denominator $a_{11} a_{22}-a_{21} a_{12}$ is called the determinant of the 2×2 system. Historically, this was because it determines whether the system had a unique solution.
This same sort of thing can be done for larger $n \times n$ systems, but the formulas quickly get way out of hand. For 3×3 systems, the variables can again be solved for as fractions with this denominator:
$D=a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32}+a_{12} a_{23} a_{31}-a_{12} a_{21} a_{33}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}$
The numerators are similarly complex. For 4×4 systems there are 24 terms with four factors in each term.
In the formula for D above, each term is a product $a_{1 i} a_{2 j} a_{3 k}$ where i, j, k is a permutation of $1,2,3$. If one permutation comes from another by a single exchange of 2 positions, then the sign of the product is changed.

Thus, we define the determinants of an $n \times n$ matrix in a more computable way.

Thus, we define the determinants of an $n \times n$ matrix in a more computable way.

First, some notation and terminology. If A is a square matrix we write $\operatorname{det}(A)$ for its determinant.

Thus, we define the determinants of an $n \times n$ matrix in a more computable way.

First, some notation and terminology. If A is a square matrix we write $\operatorname{det}(A)$ for its determinant.

$$
\text { If } A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)
$$

Thus, we define the determinants of an $n \times n$ matrix in a more computable way.

First, some notation and terminology. If A is a square matrix we write $\operatorname{det}(A)$ for its determinant.

$$
\text { If } A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)
$$

then we write

$$
\operatorname{det}(A)=\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right| \text { for its determinant. }
$$

For a 1×1 matrix define: if $A=\left(a_{11}\right)$ then $\operatorname{det}(A)=a_{11}$. For a 2×2 matrix define:

$$
\text { if } A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \text { then } \operatorname{det}(A)=a_{11} a_{22}-a_{21} a_{12}
$$

Minors

If A is an $n \times n$ matrix, the $(n-1) \times(n-1)$ matrix obtained by deleting row i and column j from A will be denoted $M_{i j}$. This is called the $i j$-minor of A. For example, if

$$
A=\left(\begin{array}{rrr}
2 & 2 & 4 \\
0 & 5 & -3 \\
2 & -1 & 4
\end{array}\right) \text { then } M_{23}=\left(\begin{array}{rr}
2 & 2 \\
2 & -1
\end{array}\right)
$$

Cofactors

If A is an $n \times n$ matrix and $M_{i j}$ is the $i j$-minor, then $A_{i j}=(-1)^{i+j} \operatorname{det}\left(M_{i j}\right)$ is called the $i j$-cofactor of A.

Cofactors

If A is an $n \times n$ matrix and $M_{i j}$ is the $i j$-minor, then $A_{i j}=(-1)^{i+j} \operatorname{det}\left(M_{i j}\right)$ is called the $i j$-cofactor of A. The example from the previous page: if

$$
A=\left(\begin{array}{rrr}
2 & 2 & 4 \\
0 & 5 & -3 \\
2 & -1 & 4
\end{array}\right) \quad \text { then } \quad A_{23}=-\left|\begin{array}{cc}
2 & 2 \\
2 & -1
\end{array}\right|=6
$$

Cofactors

If A is an $n \times n$ matrix and $M_{i j}$ is the $i j$-minor, then $A_{i j}=(-1)^{i+j} \operatorname{det}\left(M_{i j}\right)$ is called the $i j$-cofactor of A. The example from the previous page: if

$$
A=\left(\begin{array}{rrr}
2 & 2 & 4 \\
0 & 5 & -3 \\
2 & -1 & 4
\end{array}\right) \quad \text { then } \quad A_{23}=-\left|\begin{array}{cc}
2 & 2 \\
2 & -1
\end{array}\right|=6
$$

Now we can describe a computation that produces the determinant of a matrix A.

Definition

The determinant of an $n \times n$ matrix A is a scalar associated to A that is computed recursively by

$$
\operatorname{det}(A)= \begin{cases}a_{11} & \text { if } n=1 \\ a_{11} A_{11}+a_{12} A_{12}+\cdots+a_{1 n} A_{1 n} & \text { if } n>1\end{cases}
$$

For example, if $A=\left(\begin{array}{rrr}2 & 2 & 4 \\ 0 & 5 & -3 \\ 2 & -1 & 4\end{array}\right)$ then the determinant of A is

$$
\begin{aligned}
2\left|\begin{array}{rr}
5 & -3 \\
-1 & 4
\end{array}\right|+2\left(-\left|\begin{array}{cc}
0 & -3 \\
2 & 4
\end{array}\right|\right) & +4\left|\begin{array}{cc}
0 & 5 \\
2 & -1
\end{array}\right| \\
& =2(17)+2(-6)+4(-10)=-18
\end{aligned}
$$

For example, if $A=\left(\begin{array}{rrr}2 & 2 & 4 \\ 0 & 5 & -3 \\ 2 & -1 & 4\end{array}\right)$ then the determinant of A is

$$
\begin{aligned}
2\left|\begin{array}{rr}
5 & -3 \\
-1 & 4
\end{array}\right|+2\left(-\left|\begin{array}{cc}
0 & -3 \\
2 & 4
\end{array}\right|\right) & +4\left|\begin{array}{cc}
0 & 5 \\
2 & -1
\end{array}\right| \\
& =2(17)+2(-6)+4(-10)=-18
\end{aligned}
$$

Some useful properties of determinants

For example, if $A=\left(\begin{array}{rrr}2 & 2 & 4 \\ 0 & 5 & -3 \\ 2 & -1 & 4\end{array}\right)$ then the determinant of A is

$$
\begin{aligned}
2\left|\begin{array}{rr}
5 & -3 \\
-1 & 4
\end{array}\right|+2\left(-\left|\begin{array}{cc}
0 & -3 \\
2 & 4
\end{array}\right|\right) & +4\left|\begin{array}{cc}
0 & 5 \\
2 & -1
\end{array}\right| \\
& =2(17)+2(-6)+4(-10)=-18
\end{aligned}
$$

Some useful properties of determinants

Theorem

The calculation of $\operatorname{det}(A)$ can be obtained by using any row of A, that is,

$$
\operatorname{det}(A)=a_{i 1} A_{i 1}+a_{i 2} A_{i 2}+\cdots+a_{i n} A_{i n}
$$

For example, if $A=\left(\begin{array}{rrr}2 & 2 & 4 \\ 0 & 5 & -3 \\ 2 & -1 & 4\end{array}\right)$ then the determinant of A is

$$
\begin{array}{r}
0\left(-\left|\begin{array}{rr}
2 & 4 \\
-1 & 4
\end{array}\right|\right)+5\left|\begin{array}{ll}
2 & 4 \\
2 & 4
\end{array}\right|+(-3)\left(-\left|\begin{array}{rr}
2 & 2 \\
2 & -1
\end{array}\right|\right) \\
\\
=0+5(0)-3(6)=-18
\end{array}
$$

For example, if $A=\left(\begin{array}{rrr}2 & 2 & 4 \\ 0 & 5 & -3 \\ 2 & -1 & 4\end{array}\right)$ then the determinant of A is

$$
\begin{array}{r}
0\left(-\left|\begin{array}{rr}
2 & 4 \\
-1 & 4
\end{array}\right|\right)+5\left|\begin{array}{ll}
2 & 4 \\
2 & 4
\end{array}\right|+(-3)\left(-\left|\begin{array}{rr}
2 & 2 \\
2 & -1
\end{array}\right|\right) \\
\\
=0+5(0)-3(6)=-18
\end{array}
$$

The following pattern might be useful: $\left(\begin{array}{llll}+ & - & + & - \\ - & + & - & + \\ + & - & + & - \\ - & + & - & +\end{array}\right)$

For example, if $A=\left(\begin{array}{rrr}2 & 2 & 4 \\ 0 & 5 & -3 \\ 2 & -1 & 4\end{array}\right)$ then the determinant of A is

$$
\begin{array}{r}
0\left(-\left|\begin{array}{rr}
2 & 4 \\
-1 & 4
\end{array}\right|\right)+5\left|\begin{array}{ll}
2 & 4 \\
2 & 4
\end{array}\right|+(-3)\left(-\left|\begin{array}{rr}
2 & 2 \\
2 & -1
\end{array}\right|\right) \\
\\
=0+5(0)-3(6)=-18
\end{array}
$$

The following pattern might be useful: $\left(\begin{array}{llll}+ & - & + & - \\ - & + & - & + \\ + & - & + & - \\ - & + & - & +\end{array}\right)$
A matrix A with a row that is all zeros has $\operatorname{det}(A)=0$. This is clear since we can use that row to compute the determinant.

A matrix A is upper triangular if every entry below the diagonal from a_{11} to $a_{n n}$ is zero. That is, $a_{i j}=0$ for every entry with $i>j$.

A matrix A is upper triangular if every entry below the diagonal from a_{11} to $a_{n n}$ is zero. That is, $a_{i j}=0$ for every entry with $i>j$. A matrix is lower triangular if $a_{i j}=0$ for every entry with $i<j$.

A matrix A is upper triangular if every entry below the diagonal from a_{11} to $a_{n n}$ is zero. That is, $a_{i j}=0$ for every entry with $i>j$. A matrix is lower triangular if $a_{i j}=0$ for every entry with $i<j$.
If A is triangular (either upper or lower) then its determinant is the product of the diagonal entries: $a_{11} a_{22} \cdots a_{n n}$.

A matrix A is upper triangular if every entry below the diagonal from a_{11} to $a_{n n}$ is zero. That is, $a_{i j}=0$ for every entry with $i>j$. A matrix is lower triangular if $a_{i j}=0$ for every entry with $i<j$.
If A is triangular (either upper or lower) then its determinant is the product of the diagonal entries: $a_{11} a_{22} \cdots a_{n n}$.
The effect of elementary row operations

A matrix A is upper triangular if every entry below the diagonal from a_{11} to $a_{n n}$ is zero. That is, $a_{i j}=0$ for every entry with $i>j$. A matrix is lower triangular if $a_{i j}=0$ for every entry with $i<j$.
If A is triangular (either upper or lower) then its determinant is the product of the diagonal entries: $a_{11} a_{22} \cdots a_{n n}$.

The effect of elementary row operations

One way to calculate $\operatorname{det}(A)$ is to reduce it to a triangular matrix using EROs.

A matrix A is upper triangular if every entry below the diagonal from a_{11} to $a_{n n}$ is zero. That is, $a_{i j}=0$ for every entry with $i>j$. A matrix is lower triangular if $a_{i j}=0$ for every entry with $i<j$.
If A is triangular (either upper or lower) then its determinant is the product of the diagonal entries: $a_{11} a_{22} \cdots a_{n n}$.

The effect of elementary row operations

One way to calculate $\operatorname{det}(A)$ is to reduce it to a triangular matrix using EROs. This works as long as we keep track of how these EROs change the determinant.

A matrix A is upper triangular if every entry below the diagonal from a_{11} to $a_{n n}$ is zero. That is, $a_{i j}=0$ for every entry with $i>j$. A matrix is lower triangular if $a_{i j}=0$ for every entry with $i<j$.
If A is triangular (either upper or lower) then its determinant is the product of the diagonal entries: $a_{11} a_{22} \cdots a_{n n}$.

The effect of elementary row operations

One way to calculate $\operatorname{det}(A)$ is to reduce it to a triangular matrix using EROs. This works as long as we keep track of how these EROs change the determinant.

1. Type I: If two rows of A are exchanged, then the determinant changes sign.

A matrix A is upper triangular if every entry below the diagonal from a_{11} to $a_{n n}$ is zero. That is, $a_{i j}=0$ for every entry with $i>j$. A matrix is lower triangular if $a_{i j}=0$ for every entry with $i<j$.
If A is triangular (either upper or lower) then its determinant is the product of the diagonal entries: $a_{11} a_{22} \cdots a_{n n}$.

The effect of elementary row operations

One way to calculate $\operatorname{det}(A)$ is to reduce it to a triangular matrix using EROs. This works as long as we keep track of how these EROs change the determinant.

1. Type I: If two rows of A are exchanged, then the determinant changes sign.
2. Type II: If a row of A is multiplied by α then the determinant of the new matrix is $\alpha \operatorname{det}(A)$.

A matrix A is upper triangular if every entry below the diagonal from a_{11} to $a_{n n}$ is zero. That is, $a_{i j}=0$ for every entry with $i>j$. A matrix is lower triangular if $a_{i j}=0$ for every entry with $i<j$.
If A is triangular (either upper or lower) then its determinant is the product of the diagonal entries: $a_{11} a_{22} \cdots a_{n n}$.

The effect of elementary row operations

One way to calculate $\operatorname{det}(A)$ is to reduce it to a triangular matrix using EROs. This works as long as we keep track of how these EROs change the determinant.

1. Type I: If two rows of A are exchanged, then the determinant changes sign.
2. Type II: If a row of A is multiplied by α then the determinant of the new matrix is $\alpha \operatorname{det}(A)$.
3. Type III: If a row is changed by adding to it a multiple of another row, the determinant is not changed.

Using EROs to calculate $\operatorname{det}(A)$:

$$
\left|\begin{array}{rrr}
2 & 2 & 4 \\
0 & 5 & -3 \\
2 & -1 & 4
\end{array}\right|=2\left|\begin{array}{rrr}
1 & 1 & 2 \\
0 & 5 & -3 \\
2 & -1 & 4
\end{array}\right|=2\left|\begin{array}{rrr}
1 & 1 & 2 \\
0 & 5 & -3 \\
0 & -3 & 0
\end{array}\right|
$$

Using EROs to calculate $\operatorname{det}(A)$:

$$
\left|\begin{array}{rrr}
2 & 2 & 4 \\
0 & 5 & -3 \\
2 & -1 & 4
\end{array}\right|=2\left|\begin{array}{rrr}
1 & 1 & 2 \\
0 & 5 & -3 \\
2 & -1 & 4
\end{array}\right|=2\left|\begin{array}{rrr}
1 & 1 & 2 \\
0 & 5 & -3 \\
0 & -3 & 0
\end{array}\right|
$$

Continuing

$$
=-2\left|\begin{array}{rrr}
1 & 1 & 2 \\
0 & -3 & 0 \\
0 & 5 & -3
\end{array}\right|=-2(-3)\left|\begin{array}{rrr}
1 & 1 & 2 \\
0 & 1 & 0 \\
0 & 5 & -3
\end{array}\right|=6\left|\begin{array}{rrr}
1 & 1 & 2 \\
0 & 1 & 0 \\
0 & 0 & -3
\end{array}\right|=-18
$$

Using EROs to calculate $\operatorname{det}(A)$:

$$
\left|\begin{array}{rrr}
2 & 2 & 4 \\
0 & 5 & -3 \\
2 & -1 & 4
\end{array}\right|=2\left|\begin{array}{rrr}
1 & 1 & 2 \\
0 & 5 & -3 \\
2 & -1 & 4
\end{array}\right|=2\left|\begin{array}{rrr}
1 & 1 & 2 \\
0 & 5 & -3 \\
0 & -3 & 0
\end{array}\right|
$$

Continuing

$$
=-2\left|\begin{array}{rrr}
1 & 1 & 2 \\
0 & -3 & 0 \\
0 & 5 & -3
\end{array}\right|=-2(-3)\left|\begin{array}{rrr}
1 & 1 & 2 \\
0 & 1 & 0 \\
0 & 5 & -3
\end{array}\right|=6\left|\begin{array}{rrr}
1 & 1 & 2 \\
0 & 1 & 0 \\
0 & 0 & -3
\end{array}\right|=-18
$$

A side note: any function that assigns a scalar to a matrix and satisfies those three ERO conditions, plus the additional condition that it assigns the value 1 to the identity matrix, must in fact be the determinant.

Using EROs to calculate $\operatorname{det}(A)$:

$$
\left|\begin{array}{rrr}
2 & 2 & 4 \\
0 & 5 & -3 \\
2 & -1 & 4
\end{array}\right|=2\left|\begin{array}{rrr}
1 & 1 & 2 \\
0 & 5 & -3 \\
2 & -1 & 4
\end{array}\right|=2\left|\begin{array}{rrr}
1 & 1 & 2 \\
0 & 5 & -3 \\
0 & -3 & 0
\end{array}\right|
$$

Continuing

$$
=-2\left|\begin{array}{rrr}
1 & 1 & 2 \\
0 & -3 & 0 \\
0 & 5 & -3
\end{array}\right|=-2(-3)\left|\begin{array}{rrr}
1 & 1 & 2 \\
0 & 1 & 0 \\
0 & 5 & -3
\end{array}\right|=6\left|\begin{array}{rrr}
1 & 1 & 2 \\
0 & 1 & 0 \\
0 & 0 & -3
\end{array}\right|=-18
$$

A side note: any function that assigns a scalar to a matrix and satisfies those three ERO conditions, plus the additional condition that it assigns the value 1 to the identity matrix, must in fact be the determinant.
Because of this it can be proved that we can calculate the determinant by using cofactors along a column instead of a row:

Using EROs to calculate $\operatorname{det}(A)$:

$$
\left|\begin{array}{rrr}
2 & 2 & 4 \\
0 & 5 & -3 \\
2 & -1 & 4
\end{array}\right|=2\left|\begin{array}{rrr}
1 & 1 & 2 \\
0 & 5 & -3 \\
2 & -1 & 4
\end{array}\right|=2\left|\begin{array}{rrr}
1 & 1 & 2 \\
0 & 5 & -3 \\
0 & -3 & 0
\end{array}\right|
$$

Continuing

$$
=-2\left|\begin{array}{rrr}
1 & 1 & 2 \\
0 & -3 & 0 \\
0 & 5 & -3
\end{array}\right|=-2(-3)\left|\begin{array}{rrr}
1 & 1 & 2 \\
0 & 1 & 0 \\
0 & 5 & -3
\end{array}\right|=6\left|\begin{array}{rrr}
1 & 1 & 2 \\
0 & 1 & 0 \\
0 & 0 & -3
\end{array}\right|=-18
$$

A side note: any function that assigns a scalar to a matrix and satisfies those three ERO conditions, plus the additional condition that it assigns the value 1 to the identity matrix, must in fact be the determinant.
Because of this it can be proved that we can calculate the determinant by using cofactors along a column instead of a row:

$$
\operatorname{det}(A)=a_{1 j} A_{1 j}+a_{2 j} A_{2 j}+\cdots+a_{n j} A_{n j}
$$

From this, it can be proved that the transpose of A has the same determinant as $A: \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.

From this, it can be proved that the transpose of A has the same determinant as $A: \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.
If a matrix has one row that is a multiple of another row then its determinant is zero:

From this, it can be proved that the transpose of A has the same determinant as $A: \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.
If a matrix has one row that is a multiple of another row then its determinant is zero: one type III ERO will turn it into a matrix with a row of zeros.

From this, it can be proved that the transpose of A has the same determinant as $A: \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.
If a matrix has one row that is a multiple of another row then its determinant is zero: one type III ERO will turn it into a matrix with a row of zeros.
Because we can calculate determinants using cofactors along a column, it follows that if any column is all 0 's then the determinant is 0 .

From this, it can be proved that the transpose of A has the same determinant as $A: \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.
If a matrix has one row that is a multiple of another row then its determinant is zero: one type III ERO will turn it into a matrix with a row of zeros.
Because we can calculate determinants using cofactors along a column, it follows that if any column is all 0 's then the determinant is 0 . It also follows we get the same behavior under elementary column operations as we have under EROs.

From this, it can be proved that the transpose of A has the same determinant as $A: \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.
If a matrix has one row that is a multiple of another row then its determinant is zero: one type III ERO will turn it into a matrix with a row of zeros.

Because we can calculate determinants using cofactors along a column, it follows that if any column is all 0 's then the determinant is 0 . It also follows we get the same behavior under elementary column operations as we have under EROs. And if one column is a scalar multiple of another column, then the determinant is 0 .

From this, it can be proved that the transpose of A has the same determinant as $A: \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.
If a matrix has one row that is a multiple of another row then its determinant is zero: one type III ERO will turn it into a matrix with a row of zeros.

Because we can calculate determinants using cofactors along a column, it follows that if any column is all 0 's then the determinant is 0 . It also follows we get the same behavior under elementary column operations as we have under EROs. And if one column is a scalar multiple of another column, then the determinant is 0 .
If a matrix has the form $A=\left(\begin{array}{cc}A_{11} & A_{12} \\ \mathcal{O} & A_{22}\end{array}\right)$ or the form
$A=\left(\begin{array}{cc}A_{11} & \mathcal{O} \\ A_{21} & A_{22}\end{array}\right)$ then $\operatorname{det}(A)=\operatorname{det}\left(A_{11}\right) \operatorname{det}\left(A_{22}\right)$. Of course, this
requires A_{11} and A_{22} to be square matrices.

