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If we have reason to believe an n× n system has a unique solution, is
there a formula for that solution?

Here is a what happens when n = 1:

ax1 = b, x1 =
b

a

We know it has a unique solution if a ̸= 0. Now consider

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

If we multiply the first equation by a21 and the second equation by a11
and subtract the first from the second we get

(a11a22 − a21a12)x2 = b2a11 − b1a21 and so, x2 =
b2a11 − b1a21
a11a22 − a21a12

We can do a similar trick to eliminate x2 from the first equation and get

x1 =
b1a22 − b2a12
a11a22 − a21a12

. This works if a11a22 − a21a12 ̸= 0.
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The denominator a11a22 − a21a12 is called the determinant of the 2× 2
system. Historically, this was because it determines whether the system
had a unique solution.

This same sort of thing can be done for larger n× n systems, but the
formulas quickly get way out of hand. For 3× 3 systems, the variables can
again be solved for as fractions with this denominator:

D = a11a22a33−a11a23a32+a12a23a31−a12a21a33+a13a21a32−a13a22a31

The numerators are similarly complex. For 4× 4 systems there are 24
terms with four factors in each term.

In the formula for D above, each term is a product a1ia2ja3k where i, j, k
is a permutation of 1, 2, 3. If one permutation comes from another by a
single exchange of 2 positions, then the sign of the product is changed.
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Thus, we define the determinants of an n× n matrix in a more
computable way.

First, some notation and terminology. If A is a square matrix we write
det(A) for its determinant.

If A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


then we write

det(A) =

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣ for its determinant.
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For a 1× 1 matrix define: if A =
 a11

 then det(A) = a11. For a

2× 2 matrix define:

if A =

 a11 a12
a21 a22

 then det(A) = a11a22 − a21a12.

Minors

If A is an n× n matrix, the (n− 1)× (n− 1) matrix obtained by deleting
row i and column j from A will be denoted Mij . This is called the
ij-minor of A. For example, if

A =


2 2 4
0 5 −3
2 −1 4

 then M23 =

 2 2
2 −1


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Cofactors

If A is an n× n matrix and Mij is the ij-minor, then
Aij = (−1)i+j det(Mij) is called the ij-cofactor of A.

The example from
the previous page: if

A =


2 2 4
0 5 −3
2 −1 4

 then A23 = −
∣∣∣∣ 2 2
2 −1

∣∣∣∣ = 6

Now we can describe a computation that produces the determinant of a
matrix A.

Definition

The determinant of an n× n matrix A is a scalar associated to A that is
computed recursively by

det(A) =

{
a11 if n = 1,

a11A11 + a12A12 + · · ·+ a1nA1n if n > 1.
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For example, if A =


2 2 4
0 5 −3
2 −1 4

 then the determinant of A is

2

∣∣∣∣ 5 −3
−1 4

∣∣∣∣+ 2

(
−
∣∣∣∣ 0 −3
2 4

∣∣∣∣)+ 4

∣∣∣∣ 0 5
2 −1

∣∣∣∣
= 2(17) + 2(−6) + 4(−10) = −18

Some useful properties of determinants

Theorem

The calculation of det(A) can be obtained by using any row of A, that is,

det(A) = ai1Ai1 + ai2Ai2 + · · ·+ ainAin.
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0

(
−
∣∣∣∣ 2 4
−1 4

∣∣∣∣)+ 5

∣∣∣∣ 2 4
2 4

∣∣∣∣+ (−3)

(
−
∣∣∣∣ 2 2
2 −1

∣∣∣∣)
= 0 + 5(0)− 3(6) = −18

The following pattern might be useful:


+ − + −
− + − +
+ − + −
− + − +


A matrix A with a row that is all zeros has det(A) = 0. This is clear since
we can use that row to compute the determinant.
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A matrix A is upper triangular if every entry below the diagonal from a11
to ann is zero. That is, aij = 0 for every entry with i > j.

A matrix is
lower triangular if aij = 0 for every entry with i < j.

If A is triangular (either upper or lower) then its determinant is the
product of the diagonal entries: a11a22 · · · ann.
The effect of elementary row operations

One way to calculate det(A) is to reduce it to a triangular matrix using
EROs. This works as long as we keep track of how these EROs change the
determinant.

1. Type I: If two rows of A are exchanged, then the determinant changes
sign.

2. Type II: If a row of A is multiplied by α then the determinant of the
new matrix is α det(A).

3. Type III: If a row is changed by adding to it a multiple of another
row, the determinant is not changed.
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Using EROs to calculate det(A):∣∣∣∣∣∣
2 2 4
0 5 −3
2 −1 4

∣∣∣∣∣∣ = 2

∣∣∣∣∣∣
1 1 2
0 5 −3
2 −1 4

∣∣∣∣∣∣ = 2

∣∣∣∣∣∣
1 1 2
0 5 −3
0 −3 0

∣∣∣∣∣∣

Continuing

= −2

∣∣∣∣∣∣
1 1 2
0 −3 0
0 5 −3

∣∣∣∣∣∣ = −2(−3)

∣∣∣∣∣∣
1 1 2
0 1 0
0 5 −3

∣∣∣∣∣∣ = 6

∣∣∣∣∣∣
1 1 2
0 1 0
0 0 −3

∣∣∣∣∣∣ = −18

A side note: any function that assigns a scalar to a matrix and satisfies
those three ERO conditions, plus the additional condition that it assigns
the value 1 to the identity matrix, must in fact be the determinant.

Because of this it can be proved that we can calculate the determinant by
using cofactors along a column instead of a row:

det(A) = a1jA1j + a2jA2j + · · ·+ anjAnj .
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From this, it can be proved that the transpose of A has the same
determinant as A: det(AT ) = det(A).

If a matrix has one row that is a multiple of another row then its
determinant is zero: one type III ERO will turn it into a matrix with a row
of zeros.

Because we can calculate determinants using cofactors along a column, it
follows that if any column is all 0’s then the determinant is 0. It also
follows we get the same behavior under elementary column operations as
we have under EROs. And if one column is a scalar multiple of another
column, then the determinant is 0.

If a matrix has the form A =

 A11 A12

O A22

 or the form

A =

 A11 O
A21 A22

 then det(A) = det(A11) det(A22). Of course, this

requires A11 and A22 to be square matrices.
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