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In general, if A = (Aij) and B = (Bjk) where j runs from 1 to m, then
AB = C where

Cik =

m∑
j=1

AijBjk

provided the sizes of all Aij and Bjk are such that all the products can be
performed and all the rows and columns line up.

Despite the infinite number of possibilities, the most common cases are
the following:

1. A
 B1 B2

 =
 AB1 AB2


Example:


1 2
3 4
0 −1


 2 5 1

1 0 −1

 =


4 5 −1

10 15 −1
−1 0 1


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2.

 A1

A2

B =

 A1B

A2B



Example:


1 2
3 4

0 −1


 2

2

 =


6

14

−2


3.

 A1 A2

 B1

B2

 = A1B1 +A2B2

Example: 1 2
3 4

 2 3

−1 3

=

 2 3
6 9

+

 −2 6
−4 12

=

 0 9
2 21


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Finally,

4. Either a⃗1 a⃗2

 B11 O

B21 B22

 =
 a⃗1B11 + a⃗2B21 a⃗2B22



or

 A11 A12

O A22


 b1

b2

 =

 A11b1 +A12b2

A22b2


Example:


1 2 3

−1 3 4

0 0 5




2
3

1

 =


8 + 3
7 + 4

5


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Review

System of linear equations (aka “system”):

Example:


3x2 − 3x3 + 3x4 = 0

x1 + 2x2 + x4 = 1

3x1 + 6x2 + 5x4 = −3

Augmented matrix:

Example:


0 3 −3 3 0
1 2 0 1 1
3 6 0 5 −3


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Gauss-Jordan reduction:
0 3 −3 3 0
1 2 0 1 1
3 6 0 5 −3

 R1↔R2−−−−−→


1 2 0 1 1
0 3 −3 3 0
3 6 0 5 −3



R3−3R1−−−−−→


1 2 0 1 1
0 3 −3 3 0
0 0 0 2 −6

 (1/3)R2−−−−−→
(1/2)R3


1 2 0 1 1
0 1 −1 1 0
0 0 0 1 −3


We now know there is at least one solution: because there is no row with
all zeros left of the bar and nonzero to the right. The leading variables are
x1, x2 and x4. Since we have a free variable x3, there are infinitely many
solutions.

6 / 1



Gauss-Jordan reduction:
0 3 −3 3 0
1 2 0 1 1
3 6 0 5 −3

 R1↔R2−−−−−→


1 2 0 1 1
0 3 −3 3 0
3 6 0 5 −3


R3−3R1−−−−−→


1 2 0 1 1
0 3 −3 3 0
0 0 0 2 −6

 (1/3)R2−−−−−→
(1/2)R3


1 2 0 1 1
0 1 −1 1 0
0 0 0 1 −3



We now know there is at least one solution: because there is no row with
all zeros left of the bar and nonzero to the right. The leading variables are
x1, x2 and x4. Since we have a free variable x3, there are infinitely many
solutions.

6 / 1



Gauss-Jordan reduction:
0 3 −3 3 0
1 2 0 1 1
3 6 0 5 −3

 R1↔R2−−−−−→


1 2 0 1 1
0 3 −3 3 0
3 6 0 5 −3


R3−3R1−−−−−→


1 2 0 1 1
0 3 −3 3 0
0 0 0 2 −6

 (1/3)R2−−−−−→
(1/2)R3


1 2 0 1 1
0 1 −1 1 0
0 0 0 1 −3


We now know there is at least one solution: because there is no row with
all zeros left of the bar and nonzero to the right.

The leading variables are
x1, x2 and x4. Since we have a free variable x3, there are infinitely many
solutions.

6 / 1



Gauss-Jordan reduction:
0 3 −3 3 0
1 2 0 1 1
3 6 0 5 −3

 R1↔R2−−−−−→


1 2 0 1 1
0 3 −3 3 0
3 6 0 5 −3


R3−3R1−−−−−→


1 2 0 1 1
0 3 −3 3 0
0 0 0 2 −6

 (1/3)R2−−−−−→
(1/2)R3


1 2 0 1 1
0 1 −1 1 0
0 0 0 1 −3


We now know there is at least one solution: because there is no row with
all zeros left of the bar and nonzero to the right. The leading variables are
x1, x2 and x4.

Since we have a free variable x3, there are infinitely many
solutions.

6 / 1



Gauss-Jordan reduction:
0 3 −3 3 0
1 2 0 1 1
3 6 0 5 −3

 R1↔R2−−−−−→


1 2 0 1 1
0 3 −3 3 0
3 6 0 5 −3


R3−3R1−−−−−→


1 2 0 1 1
0 3 −3 3 0
0 0 0 2 −6

 (1/3)R2−−−−−→
(1/2)R3


1 2 0 1 1
0 1 −1 1 0
0 0 0 1 −3


We now know there is at least one solution: because there is no row with
all zeros left of the bar and nonzero to the right. The leading variables are
x1, x2 and x4. Since we have a free variable x3, there are infinitely many
solutions.

6 / 1



Echelon form and reduced echelon form:
1 2 0 1 1
0 1 −1 1 0
0 0 0 1 −3

 R2−R3−−−−→
R1−R3


1 2 0 0 4
0 1 −1 0 3
0 0 0 1 −3



R1−2R2−−−−−→


1 0 2 0 −2
0 1 −1 0 3
0 0 0 1 −3

 yields−−−→


x1 + 2x3 = −2

x2 − x3 = 3

x4 = −3
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0 0 0 1 −3


R1−2R2−−−−−→


1 0 2 0 −2
0 1 −1 0 3
0 0 0 1 −3

 yields−−−→


x1 + 2x3 = −2

x2 − x3 = 3

x4 = −3

7 / 1



Solving:

x1 = −2− 2x3

x2 = 3 + x3

x4 = −3

 and so,−−−−→


x3 = α

x1 = −2− 2α

x2 = 3 + α

x4 = −3

Whence the solutions are

(−2− 2α, 3 + α, α,−3) or


−2− 2α
3 + α
α
−3


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Arithmetic with matrices.

Scalar multiplication: if A = (aij) then αA = (αaij).

Example: 2

 1 3 −2
0 −1 5

 =

 2 6 −4
0 −2 10


Addition: If A = (aij)n×k and B = (bij)n×k then A+B = (aij + bij)n×k.

Example:

 2 4
1 3

+

 5 −2
0 −3

 =

 7 2
1 0


Matrix multiplication: If A = (aij)n×m and B = (bjk)m×p then AB = C

where (cik)n×p =
(∑m

j=1 aijbjk

)
n×p

.
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Alternatively:

If A =


a⃗1
a⃗2
...

a⃗n

 and B =
 b1 b2 · · · bp


then AB = C where (cik)n×p = (a⃗ibk)n×p.

Example:

 1 3 −2
0 −1 −1




2 6
0 −2
1 3

 =

 0 −6
−1 −1


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Elementary matrices: Apply one ERO to the identity to get an elementary
matrix.

Examples:
0 0 1
0 1 0
1 0 0




1 0 0
0 1 0
0 0 3




1 0 0
0 1 0
0 4 1


The EROs used to create these are R1 ↔ R3, 3R3 and R3 + 4R2.

Any elementary matrix is invertible and its inverse is elementary.

Any invertible matrix A is a product of elementary matrices and A−1 is
the product of their inverses in the opposite order.

We can find the inverse of A (or perhaps discover it has none) by reducing
the matrix (A | I) to reduced echelon form.
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Example: A is the matrix on the left below.
1 2 1 1 0 0
2 5 2 0 1 0
0 0 1 0 0 1

 R2−2R1−−−−−→


1 2 1 1 0 0
0 1 0 −2 1 0
0 0 1 0 0 1



R1−R3−−−−→
1 2 0 1 0 −1
0 1 0 −2 1 0
0 0 1 0 0 1

 R1−2R2−−−−−→


1 0 0 5 −2 −1
0 1 0 −2 1 0
0 0 1 0 0 1


so

A−1 =


5 −2 −1

−2 1 0
0 0 1


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