Partitioned Matrices

D. H. Luecking

05 Feb 2024

In general, if $A=\left(A_{i j}\right)$ and $B=\left(B_{j k}\right)$ where j runs from 1 to m, then $A B=C$ where

$$
C_{i k}=\sum_{j=1}^{m} A_{i j} B_{j k}
$$

In general, if $A=\left(A_{i j}\right)$ and $B=\left(B_{j k}\right)$ where j runs from 1 to m, then $A B=C$ where

$$
C_{i k}=\sum_{j=1}^{m} A_{i j} B_{j k}
$$

provided the sizes of all $A_{i j}$ and $B_{j k}$ are such that all the products can be performed and all the rows and columns line up.

In general, if $A=\left(A_{i j}\right)$ and $B=\left(B_{j k}\right)$ where j runs from 1 to m, then $A B=C$ where

$$
C_{i k}=\sum_{j=1}^{m} A_{i j} B_{j k}
$$

provided the sizes of all $A_{i j}$ and $B_{j k}$ are such that all the products can be performed and all the rows and columns line up.
Despite the infinite number of possibilities, the most common cases are the following:

In general, if $A=\left(A_{i j}\right)$ and $B=\left(B_{j k}\right)$ where j runs from 1 to m, then $A B=C$ where

$$
C_{i k}=\sum_{j=1}^{m} A_{i j} B_{j k}
$$

provided the sizes of all $A_{i j}$ and $B_{j k}$ are such that all the products can be performed and all the rows and columns line up.
Despite the infinite number of possibilities, the most common cases are the following:

$$
\text { 1. } A\left(B_{1} \mid B_{2}\right)=\left(A B_{1} \mid A B_{2}\right)
$$

In general, if $A=\left(A_{i j}\right)$ and $B=\left(B_{j k}\right)$ where j runs from 1 to m, then $A B=C$ where

$$
C_{i k}=\sum_{j=1}^{m} A_{i j} B_{j k}
$$

provided the sizes of all $A_{i j}$ and $B_{j k}$ are such that all the products can be performed and all the rows and columns line up.
Despite the infinite number of possibilities, the most common cases are the following:

$$
\begin{aligned}
& \text { 1. } A\left(B_{1} \mid B_{2}\right)=\left(A B_{1} \mid A B_{2}\right) \\
& \text { Example: } \quad\left(\begin{array}{rr}
1 & 2 \\
3 & 4 \\
0 & -1
\end{array}\right)\left(\begin{array}{rr|r}
2 & 5 & 1 \\
1 & 0 & -1
\end{array}\right)=\left(\begin{array}{rr|r}
4 & 5 & -1 \\
10 & 15 & -1 \\
-1 & 0 & 1
\end{array}\right)
\end{aligned}
$$

2. $\left(\frac{A_{1}}{A_{2}}\right) B=\left(\frac{A_{1} B}{A_{2} B}\right)$
3. $\left(\frac{A_{1}}{A_{2}}\right) B=\left(\frac{A_{1} B}{A_{2} B}\right)$

Example: $\left(\begin{array}{rr}1 & 2 \\ 3 & 4 \\ \hline 0 & -1\end{array}\right)\binom{2}{2}=\left(\begin{array}{r}6 \\ 14 \\ \hline-2\end{array}\right)$
2. $\left(\frac{A_{1}}{A_{2}}\right) B=\left(\frac{A_{1} B}{A_{2} B}\right)$

Example: $\left(\begin{array}{lr}1 & 2 \\ 3 & 4 \\ \hline 0 & -1\end{array}\right)\binom{2}{2}=\left(\begin{array}{r}6 \\ 14 \\ \hline-2\end{array}\right)$
3. $\left(A_{1} \mid A_{2}\right)\left(\frac{B_{1}}{B_{2}}\right)=A_{1} B_{1}+A_{2} B_{2}$
2. $\left(\frac{A_{1}}{A_{2}}\right) B=\left(\frac{A_{1} B}{A_{2} B}\right)$

Example: $\left(\begin{array}{rr}1 & 2 \\ 3 & 4 \\ \hline 0 & -1\end{array}\right)\binom{2}{2}=\left(\begin{array}{r}6 \\ 14 \\ \hline-2\end{array}\right)$
3. $\left(A_{1} \mid A_{2}\right)\left(\frac{B_{1}}{B_{2}}\right)=A_{1} B_{1}+A_{2} B_{2}$

Example:

$$
\left(\begin{array}{l|l}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{rr}
2 & 3 \\
\hline-1 & 3
\end{array}\right)=\left(\begin{array}{ll}
2 & 3 \\
6 & 9
\end{array}\right)+\left(\begin{array}{rr}
-2 & 6 \\
-4 & 12
\end{array}\right)=\left(\begin{array}{rr}
0 & 9 \\
2 & 21
\end{array}\right)
$$

Finally,
4. Either

$$
\left(\begin{array}{l|l}
\overrightarrow{\mathbf{a}}_{1} & \overrightarrow{\mathbf{a}}_{2}
\end{array}\right)\left(\begin{array}{r|r}
B_{11} & \mathcal{O} \\
\hline B_{21} & B_{22}
\end{array}\right)=\left(\begin{array}{l|}
\overrightarrow{\mathbf{a}}_{1} B_{11}+\overrightarrow{\mathbf{a}}_{2} B_{21} \mid \overrightarrow{\mathbf{a}}_{2} B_{22}
\end{array}\right)
$$

Finally,
4. Either

$$
\begin{aligned}
& \left(\begin{array}{l|l}
\overrightarrow{\mathbf{a}}_{1} & \overrightarrow{\mathbf{a}}_{2}
\end{array}\right)\left(\begin{array}{r|r}
B_{11} & \mathcal{O} \\
\hline B_{21} & B_{22}
\end{array}\right)=\left(\overrightarrow{\mathbf{a}}_{1} B_{11}+\overrightarrow{\mathbf{a}}_{2} B_{21} \mid \overrightarrow{\mathbf{a}}_{2} B_{22}\right) \\
& \text { or }\left(\begin{array}{r|r}
A_{11} & A_{12} \\
\hline \mathcal{O} & A_{22}
\end{array}\right)\left(\frac{\mathbf{b}_{1}}{\mathbf{b}_{2}}\right)=\left(\frac{A_{11} \mathbf{b}_{1}+A_{12} \mathbf{b}_{2}}{A_{22} \mathbf{b}_{2}}\right)
\end{aligned}
$$

Finally,
4. Either

$$
\begin{gathered}
\left(\begin{array}{r|r}
\overrightarrow{\mathbf{a}}_{1} & \overrightarrow{\mathbf{a}}_{2}
\end{array}\right)\left(\begin{array}{l|r}
B_{11} & \mathcal{O} \\
\hline B_{21} & B_{22}
\end{array}\right)=\left(\overrightarrow{\mathbf{a}}_{1} B_{11}+\overrightarrow{\mathbf{a}}_{2} B_{21} \mid \overrightarrow{\mathbf{a}}_{2} B_{22}\right) \\
\text { or }\left(\begin{array}{r|r}
A_{11} & A_{12} \\
\hline \mathcal{O} & A_{22}
\end{array}\right)\left(\frac{\mathbf{b}_{1}}{\mathbf{b}_{2}}\right)=\left(\frac{A_{11} \mathbf{b}_{1}+A_{12} \mathbf{b}_{2}}{A_{22} \mathbf{b}_{2}}\right) \\
\text { Example: }\left(\begin{array}{rr|r}
1 & 2 \\
-1 & 3 & 4 \\
\hline 0 & 0 & 5
\end{array}\right)\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right)=\left(\begin{array}{c}
8+3 \\
7+4 \\
5
\end{array}\right)
\end{gathered}
$$

Review

System of linear equations (aka "system"):
Example: $\left\{\begin{aligned} 3 x_{2}-3 x_{3}+3 x_{4} & =0 \\ x_{1}+2 x_{2}+x_{4} & =1 \\ 3 x_{1}+6 x_{2}+5 x_{4} & =-3\end{aligned}\right.$

Review

System of linear equations (aka "system"):
Example: $\left\{\begin{aligned} 3 x_{2}-3 x_{3}+3 x_{4} & =0 \\ x_{1}+2 x_{2}+x_{4} & =1 \\ 3 x_{1}+6 x_{2}+5 x_{4} & =-3\end{aligned}\right.$
Augmented matrix:

$$
\text { Example: } \quad\left(\begin{array}{rrrr|r}
0 & 3 & -3 & 3 & 0 \\
1 & 2 & 0 & 1 & 1 \\
3 & 6 & 0 & 5 & -3
\end{array}\right)
$$

Gauss-Jordan reduction:

$$
\left(\begin{array}{rrrr|r}
0 & 3 & -3 & 3 & 0 \\
1 & 2 & 0 & 1 & 1 \\
3 & 6 & 0 & 5 & -3
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{rrrr|r}
1 & 2 & 0 & 1 & 1 \\
0 & 3 & -3 & 3 & 0 \\
3 & 6 & 0 & 5 & -3
\end{array}\right)
$$

Gauss-Jordan reduction:

$$
\begin{gathered}
\left(\begin{array}{rrrr|r}
0 & 3 & -3 & 3 & 0 \\
1 & 2 & 0 & 1 & 1 \\
3 & 6 & 0 & 5 & -3
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{rrrr|r}
1 & 2 & 0 & 1 & 1 \\
0 & 3 & -3 & 3 & 0 \\
3 & 6 & 0 & 5 & -3
\end{array}\right) \\
\xrightarrow{R_{3}-3 R_{1}}\left(\begin{array}{rrrr|r}
1 & 2 & 0 & 1 \\
0 & 3 & -3 & 3 \\
0 & 0 & 0 & 2 & 1 \\
0
\end{array}\right) \xrightarrow[(1 / 2) R_{3}]{(1 / 3) R_{2}}\left(\begin{array}{rrrr|r}
1 & 2 & 0 & 1 & 1 \\
0 & 1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 & -3
\end{array}\right)
\end{gathered}
$$

Gauss-Jordan reduction:

$$
\begin{gathered}
\left(\begin{array}{rrrr|r}
0 & 3 & -3 & 3 & 0 \\
1 & 2 & 0 & 1 & 1 \\
3 & 6 & 0 & 5 & -3
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{rrrr|r}
1 & 2 & 0 & 1 & 1 \\
0 & 3 & -3 & 3 & 0 \\
3 & 6 & 0 & 5 & -3
\end{array}\right) \\
\xrightarrow{R_{3}-3 R_{1}}\left(\begin{array}{rrrr|r}
1 & 2 & 0 & 1 \\
0 & 3 & -3 & 3 \\
0 & 0 & 0 & 2 & 1 \\
-6
\end{array}\right) \xrightarrow[(1 / 2) R_{3}]{(1 / 3) R_{2}}\left(\begin{array}{rrrr|r}
1 & 2 & 0 & 1 & 1 \\
0 & 1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 & -3
\end{array}\right)
\end{gathered}
$$

We now know there is at least one solution: because there is no row with all zeros left of the bar and nonzero to the right.

Gauss-Jordan reduction:

$$
\begin{gathered}
\left(\begin{array}{rrrr|r}
0 & 3 & -3 & 3 & 0 \\
1 & 2 & 0 & 1 & 1 \\
3 & 6 & 0 & 5 & -3
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{rrrr|r}
1 & 2 & 0 & 1 & 1 \\
0 & 3 & -3 & 3 & 0 \\
3 & 6 & 0 & 5 & -3
\end{array}\right) \\
\xrightarrow{R_{3}-3 R_{1}}\left(\begin{array}{rrrr|r}
1 & 2 & 0 & 1 \\
0 & 3 & -3 & 3 \\
0 & 0 & 0 & 2 & 1 \\
0
\end{array}\right) \xrightarrow[(1 / 2) R_{3}]{(1 / 3) R_{2}}\left(\begin{array}{rrrr|r}
1 & 2 & 0 & 1 & 1 \\
0 & 1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 & -3
\end{array}\right)
\end{gathered}
$$

We now know there is at least one solution: because there is no row with all zeros left of the bar and nonzero to the right. The leading variables are x_{1}, x_{2} and x_{4}.

Gauss-Jordan reduction:

$$
\begin{gathered}
\left(\begin{array}{rrrr|r}
0 & 3 & -3 & 3 & 0 \\
1 & 2 & 0 & 1 & 1 \\
3 & 6 & 0 & 5 & -3
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{rrrr|r}
1 & 2 & 0 & 1 & 1 \\
0 & 3 & -3 & 3 & 0 \\
3 & 6 & 0 & 5 & -3
\end{array}\right) \\
\xrightarrow{R_{3}-3 R_{1}}\left(\begin{array}{rrrr|r}
1 & 2 & 0 & 1 \\
0 & 3 & -3 & 3 \\
0 & 0 & 0 & 2 & 1 \\
0
\end{array}\right) \xrightarrow[(1 / 2) R_{3}]{\xrightarrow{(1 / 3) R_{2}}\left(\begin{array}{rrrr|r}
1 & 2 & 0 & 1 & 1 \\
0 & 1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 & -3
\end{array}\right)}
\end{gathered}
$$

We now know there is at least one solution: because there is no row with all zeros left of the bar and nonzero to the right. The leading variables are x_{1}, x_{2} and x_{4}. Since we have a free variable x_{3}, there are infinitely many solutions.

Echelon form and reduced echelon form:

$$
\left(\begin{array}{rrrr|r}
1 & 2 & 0 & 1 & 1 \\
0 & 1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 & -3
\end{array}\right) \xrightarrow[R_{1}-R_{3}]{R_{2}-R_{3}}\left(\begin{array}{rrrr|r}
1 & 2 & 0 & 0 & 4 \\
0 & 1 & -1 & 0 & 3 \\
0 & 0 & 0 & 1 & -3
\end{array}\right)
$$

Echelon form and reduced echelon form:

$$
\begin{aligned}
\left(\begin{array}{rrrr|r}
1 & 2 & 0 & 1 & 1 \\
0 & 1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 & -3
\end{array}\right) \xrightarrow[R_{1}-R_{3}]{R_{2}-R_{3}}\left(\begin{array}{rrrr|r}
1 & 2 & 0 & 0 & 4 \\
0 & 1 & -1 & 0 & 3 \\
0 & 0 & 0 & 1 & -3
\end{array}\right) \\
\xrightarrow{R_{1}-2 R_{2}}\left(\begin{array}{rrrr|r}
1 & 0 & 2 & 0 & -2 \\
0 & 1 & -1 & 0 & 3 \\
0 & 0 & 0 & 1 & -3
\end{array}\right) \xrightarrow{\text { yields }}\left\{\begin{array}{rrr}
x_{1}+2 x_{3} & =-2 \\
x_{2}-x_{3} & = & 3 \\
& x_{4} & =-3
\end{array}\right.
\end{aligned}
$$

Solving:

$$
\left.\begin{array}{l}
x_{1}=-2-2 x_{3} \\
x_{2}=3+x_{3} \\
x_{4}=-3
\end{array}\right\} \xrightarrow{\text { and so, }}\left\{\begin{array}{l}
x_{3}=\alpha \\
x_{1}=-2-2 \alpha \\
x_{2}=3+\alpha \\
x_{4}=-3
\end{array}\right.
$$

Solving:

$$
\left.\begin{array}{l}
x_{1}=-2-2 x_{3} \\
x_{2}=3+x_{3} \\
x_{4}=-3
\end{array}\right\} \xrightarrow{\text { and so, }}\left\{\begin{array}{l}
x_{3}=\alpha \\
x_{1}=-2-2 \alpha \\
x_{2}=3+\alpha \\
x_{4}=-3
\end{array}\right.
$$

Whence the solutions are

$$
(-2-2 \alpha, 3+\alpha, \alpha,-3) \text { or }\left(\begin{array}{c}
-2-2 \alpha \\
3+\alpha \\
\alpha \\
-3
\end{array}\right)
$$

Arithmetic with matrices.
Scalar multiplication: if $A=\left(a_{i j}\right)$ then $\alpha A=\left(\alpha a_{i j}\right)$.

Arithmetic with matrices.
Scalar multiplication: if $A=\left(a_{i j}\right)$ then $\alpha A=\left(\alpha a_{i j}\right)$.

$$
\text { Example: } 2\left(\begin{array}{rrr}
1 & 3 & -2 \\
0 & -1 & 5
\end{array}\right)=\left(\begin{array}{rrr}
2 & 6 & -4 \\
0 & -2 & 10
\end{array}\right)
$$

Arithmetic with matrices.
Scalar multiplication: if $A=\left(a_{i j}\right)$ then $\alpha A=\left(\alpha a_{i j}\right)$.

$$
\text { Example: } 2\left(\begin{array}{rrr}
1 & 3 & -2 \\
0 & -1 & 5
\end{array}\right)=\left(\begin{array}{rrr}
2 & 6 & -4 \\
0 & -2 & 10
\end{array}\right)
$$

Addition: If $A=\left(a_{i j}\right)_{n \times k}$ and $B=\left(b_{i j}\right)_{n \times k}$ then $A+B=\left(a_{i j}+b_{i j}\right)_{n \times k}$.
Example: $\left(\begin{array}{ll}2 & 4 \\ 1 & 3\end{array}\right)+\left(\begin{array}{ll}5 & -2 \\ 0 & -3\end{array}\right)=\left(\begin{array}{ll}7 & 2 \\ 1 & 0\end{array}\right)$

Arithmetic with matrices.
Scalar multiplication: if $A=\left(a_{i j}\right)$ then $\alpha A=\left(\alpha a_{i j}\right)$.

$$
\text { Example: } 2\left(\begin{array}{rrr}
1 & 3 & -2 \\
0 & -1 & 5
\end{array}\right)=\left(\begin{array}{rrr}
2 & 6 & -4 \\
0 & -2 & 10
\end{array}\right)
$$

Addition: If $A=\left(a_{i j}\right)_{n \times k}$ and $B=\left(b_{i j}\right)_{n \times k}$ then $A+B=\left(a_{i j}+b_{i j}\right)_{n \times k}$. Example: $\left(\begin{array}{ll}2 & 4 \\ 1 & 3\end{array}\right)+\left(\begin{array}{cc}5 & -2 \\ 0 & -3\end{array}\right)=\left(\begin{array}{ll}7 & 2 \\ 1 & 0\end{array}\right)$

Matrix multiplication: If $A=\left(a_{i j}\right)_{n \times m}$ and $B=\left(b_{j k}\right)_{m \times p}$ then $A B=C$ where $\left(c_{i k}\right)_{n \times p}=\left(\sum_{j=1}^{m} a_{i j} b_{j k}\right)_{n \times p}$.

Alternatively:

$$
\text { If } A=\left(\begin{array}{r}
\overrightarrow{\mathbf{a}}_{1} \\
\overrightarrow{\mathbf{a}}_{2} \\
\vdots \\
\overrightarrow{\mathbf{a}}_{n}
\end{array}\right) \text { and } B=\left(\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{p}
\end{array}\right)
$$

then $A B=C$ where $\left(c_{i k}\right)_{n \times p}=\left(\overrightarrow{\mathbf{a}}_{i} \mathbf{b}_{k}\right)_{n \times p}$.

Alternatively:

$$
\text { If } A=\left(\begin{array}{r}
\overrightarrow{\mathbf{a}}_{1} \\
\overrightarrow{\mathbf{a}}_{2} \\
\vdots \\
\overrightarrow{\mathbf{a}}_{n}
\end{array}\right) \text { and } B=\left(\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{p}
\end{array}\right)
$$

then $A B=C$ where $\left(c_{i k}\right)_{n \times p}=\left(\overrightarrow{\mathbf{a}}_{i} \mathbf{b}_{k}\right)_{n \times p}$.
Example: $\quad\left(\begin{array}{rrr}1 & 3 & -2 \\ 0 & -1 & -1\end{array}\right)\left(\begin{array}{rr}2 & 6 \\ 0 & -2 \\ 1 & 3\end{array}\right)=\left(\begin{array}{rr}0 & -6 \\ -1 & -1\end{array}\right)$

Elementary matrices: Apply one ERO to the identity to get an elementary matrix.

Elementary matrices: Apply one ERO to the identity to get an elementary matrix. Examples:

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 4 & 1
\end{array}\right)
$$

Elementary matrices: Apply one ERO to the identity to get an elementary matrix. Examples:

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 4 & 1
\end{array}\right)
$$

The EROs used to create these are $R_{1} \leftrightarrow R_{3}, 3 R_{3}$ and $R_{3}+4 R_{2}$.

Elementary matrices: Apply one ERO to the identity to get an elementary matrix. Examples:

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 4 & 1
\end{array}\right)
$$

The EROs used to create these are $R_{1} \leftrightarrow R_{3}, 3 R_{3}$ and $R_{3}+4 R_{2}$. Any elementary matrix is invertible and its inverse is elementary.

Elementary matrices: Apply one ERO to the identity to get an elementary matrix. Examples:

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 4 & 1
\end{array}\right)
$$

The EROs used to create these are $R_{1} \leftrightarrow R_{3}, 3 R_{3}$ and $R_{3}+4 R_{2}$. Any elementary matrix is invertible and its inverse is elementary. Any invertible matrix A is a product of elementary matrices and A^{-1} is the product of their inverses in the opposite order.

Elementary matrices: Apply one ERO to the identity to get an elementary matrix. Examples:

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 4 & 1
\end{array}\right)
$$

The EROs used to create these are $R_{1} \leftrightarrow R_{3}, 3 R_{3}$ and $R_{3}+4 R_{2}$.
Any elementary matrix is invertible and its inverse is elementary.
Any invertible matrix A is a product of elementary matrices and A^{-1} is the product of their inverses in the opposite order.
We can find the inverse of A (or perhaps discover it has none) by reducing the matrix $(A \mid I)$ to reduced echelon form.

Example: A is the matrix on the left below.

$$
\left(\begin{array}{lll|lll}
1 & 2 & 1 & 1 & 0 & 0 \\
2 & 5 & 2 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \xrightarrow{R_{2}-2 R_{1}}\left(\begin{array}{lll|rrl}
1 & 2 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & -2 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

Example: A is the matrix on the left below.

$$
\begin{aligned}
& \left(\begin{array}{lll|lll}
1 & 2 & 1 & 1 & 0 & 0 \\
2 & 5 & 2 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \xrightarrow{R_{2}-2 R_{1}}\left(\begin{array}{lll|rrr}
1 & 2 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & -2 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \\
& \xrightarrow{R_{1}-R_{3}} \\
& \left(\begin{array}{rrr|rrr}
1 & 2 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & -2 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \xrightarrow{R_{1}-2 R_{2}}\left(\begin{array}{lll|rrr}
1 & 0 & 0 & 5 & -2 & -1 \\
0 & 1 & 0 & -2 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Example: A is the matrix on the left below.

$$
\begin{gathered}
\left(\begin{array}{lll|lll}
1 & 2 & 1 & 1 & 0 & 0 \\
2 & 5 & 2 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \xrightarrow{R_{2}-2 R_{1}}\left(\begin{array}{lll|rrr}
1 & 2 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & - \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\xrightarrow{R_{1}-R_{3}} \\
\left(\begin{array}{lll|rrr}
1 & 2 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & -2 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \xrightarrow{R_{1}-2 R_{2}}\left(\left.\begin{array}{lll|rrr}
1 & 0 & 0 \\
0 & 1 & 0 & 5 & -2 & -1 \\
0 & 0 & 1
\end{array} \right\rvert\, \begin{array}{rr}
1 & 0 \\
0 & 0
\end{array}\right. \\
A^{-1}=\left(\begin{array}{rrr}
5 & -2 & -1 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

SO

