Matrices, cont.

D. H. Luecking

29 Jan 2024

Two special matrices

A zero matrix, designated \mathcal{O}, is one with zeros in every position. When necessary we'll write $\mathcal{O}_{n \times k}$ to indicate its size.

Two special matrices

A zero matrix, designated \mathcal{O}, is one with zeros in every position. When necessary we'll write $\mathcal{O}_{n \times k}$ to indicate its size. Its special property is that $A+\mathcal{O}=A$ for every matrix A that is the same size as \mathcal{O}. Also $\mathcal{O}_{n \times k} A_{k \times m}=\mathcal{O}_{n \times m}$

Two special matrices

A zero matrix, designated \mathcal{O}, is one with zeros in every position. When necessary we'll write $\mathcal{O}_{n \times k}$ to indicate its size. Its special property is that $A+\mathcal{O}=A$ for every matrix A that is the same size as \mathcal{O}. Also $\mathcal{O}_{n \times k} A_{k \times m}=\mathcal{O}_{n \times m}$
For every k there is a $k \times k$ matrix called I_{k} which has zeros in every position except 1 s on the diagonal from upper left to lower right.

Two special matrices

A zero matrix, designated \mathcal{O}, is one with zeros in every position. When necessary we'll write $\mathcal{O}_{n \times k}$ to indicate its size. Its special property is that $A+\mathcal{O}=A$ for every matrix A that is the same size as \mathcal{O}. Also
$\mathcal{O}_{n \times k} A_{k \times m}=\mathcal{O}_{n \times m}$
For every k there is a $k \times k$ matrix called I_{k} which has zeros in every position except 1 s on the diagonal from upper left to lower right. If the entries of I_{k} are called $\delta_{i j}$, then $\delta_{i i}=1$ for every i and $\delta_{i j}=0$ for every $i \neq j$.

Two special matrices

A zero matrix, designated \mathcal{O}, is one with zeros in every position. When necessary we'll write $\mathcal{O}_{n \times k}$ to indicate its size. Its special property is that $A+\mathcal{O}=A$ for every matrix A that is the same size as \mathcal{O}. Also
$\mathcal{O}_{n \times k} A_{k \times m}=\mathcal{O}_{n \times m}$
For every k there is a $k \times k$ matrix called I_{k} which has zeros in every position except 1 s on the diagonal from upper left to lower right. If the entries of I_{k} are called $\delta_{i j}$, then $\delta_{i i}=1$ for every i and $\delta_{i j}=0$ for every $i \neq j$. If A is $n \times k$ and B is $k \times m$ then $A I_{k}=A$ and $I_{k} B=B$. If C is $k \times k$ then $I_{k} C=C I_{k}=C$.

Two special matrices

A zero matrix, designated \mathcal{O}, is one with zeros in every position. When necessary we'll write $\mathcal{O}_{n \times k}$ to indicate its size. Its special property is that $A+\mathcal{O}=A$ for every matrix A that is the same size as \mathcal{O}. Also
$\mathcal{O}_{n \times k} A_{k \times m}=\mathcal{O}_{n \times m}$
For every k there is a $k \times k$ matrix called I_{k} which has zeros in every position except 1 s on the diagonal from upper left to lower right. If the entries of I_{k} are called $\delta_{i j}$, then $\delta_{i i}=1$ for every i and $\delta_{i j}=0$ for every $i \neq j$. If A is $n \times k$ and B is $k \times m$ then $A I_{k}=A$ and $I_{k} B=B$. If C is $k \times k$ then $I_{k} C=C I_{k}=C$.

Matrix algebra

If $A=\left(a_{i j}\right)_{n \times k}$ and $B=\left(b_{i j}\right)_{k \times m}$, then the entries of $A B$ are

$$
\overrightarrow{\mathbf{a}}_{i} \mathbf{b}_{j}=\left(\begin{array}{llll}
a_{i 1} & a_{i 2} & \cdots & a_{i k}
\end{array}\right)\left(\begin{array}{r}
b_{1 j} \\
b_{2 j} \\
\vdots \\
b_{k j}
\end{array}\right)=\sum_{p=1}^{k} a_{i p} b_{p j}
$$

Two special matrices

A zero matrix, designated \mathcal{O}, is one with zeros in every position. When necessary we'll write $\mathcal{O}_{n \times k}$ to indicate its size. Its special property is that $A+\mathcal{O}=A$ for every matrix A that is the same size as \mathcal{O}. Also
$\mathcal{O}_{n \times k} A_{k \times m}=\mathcal{O}_{n \times m}$
For every k there is a $k \times k$ matrix called I_{k} which has zeros in every position except 1 s on the diagonal from upper left to lower right. If the entries of I_{k} are called $\delta_{i j}$, then $\delta_{i i}=1$ for every i and $\delta_{i j}=0$ for every $i \neq j$. If A is $n \times k$ and B is $k \times m$ then $A I_{k}=A$ and $I_{k} B=B$. If C is $k \times k$ then $I_{k} C=C I_{k}=C$.

Matrix algebra

If $A=\left(a_{i j}\right)_{n \times k}$ and $B=\left(b_{i j}\right)_{k \times m}$, then the entries of $A B$ are

$$
\overrightarrow{\mathbf{a}}_{i} \mathbf{b}_{j}=\left(\begin{array}{llll}
a_{i 1} & a_{i 2} & \cdots & a_{i k}
\end{array}\right)\left(\begin{array}{r}
b_{1 j} \\
b_{2 j} \\
\vdots \\
b_{k j}
\end{array}\right)=\sum_{p=1}^{k} a_{i p} b_{p j}
$$

It follows from this that if C is also $k \times m$ then $A(B+C)=A B+A C$.

Some other formulas, assuming that A, B and C are matrices whose sizes permit the inticated operations, and α and β are scalars:

Some other formulas, assuming that A, B and C are matrices whose sizes permit the inticated operations, and α and β are scalars:

1. $A+B=B+A$

Some other formulas, assuming that A, B and C are matrices whose sizes permit the inticated operations, and α and β are scalars:

1. $A+B=B+A$
2. $(A+B)+C=A+(B+C)$

Some other formulas, assuming that A, B and C are matrices whose sizes permit the inticated operations, and α and β are scalars:

1. $A+B=B+A$
2. $(A+B)+C=A+(B+C)$
3. $(A B) C=A(B C)$

Some other formulas, assuming that A, B and C are matrices whose sizes permit the inticated operations, and α and β are scalars:

1. $A+B=B+A$
2. $(A+B)+C=A+(B+C)$
3. $(A B) C=A(B C)$
4. $A(B+C)=A B+A C$

Some other formulas, assuming that A, B and C are matrices whose sizes permit the inticated operations, and α and β are scalars:

1. $A+B=B+A$
2. $(A+B)+C=A+(B+C)$
3. $(A B) C=A(B C)$
4. $A(B+C)=A B+A C$
5. $(B+C) A=B A+C A$

Some other formulas, assuming that A, B and C are matrices whose sizes permit the inticated operations, and α and β are scalars:

1. $A+B=B+A$
2. $(A+B)+C=A+(B+C)$
3. $(A B) C=A(B C)$
4. $A(B+C)=A B+A C$
5. $(B+C) A=B A+C A$
6. $(\alpha \beta) A=\alpha(\beta A)$

Some other formulas, assuming that A, B and C are matrices whose sizes permit the inticated operations, and α and β are scalars:

1. $A+B=B+A$
2. $(A+B)+C=A+(B+C)$
3. $(A B) C=A(B C)$
4. $A(B+C)=A B+A C$
5. $(B+C) A=B A+C A$
6. $(\alpha \beta) A=\alpha(\beta A)$
7. $\alpha(A B)=(\alpha A) B=A(\alpha B)$

Some other formulas, assuming that A, B and C are matrices whose sizes permit the inticated operations, and α and β are scalars:

1. $A+B=B+A$
2. $(A+B)+C=A+(B+C)$
3. $(A B) C=A(B C)$
4. $A(B+C)=A B+A C$
5. $(B+C) A=B A+C A$
6. $(\alpha \beta) A=\alpha(\beta A)$
7. $\alpha(A B)=(\alpha A) B=A(\alpha B)$
8. $\alpha(A+B)=\alpha A+\alpha B$

Some other formulas, assuming that A, B and C are matrices whose sizes permit the inticated operations, and α and β are scalars:

$$
\begin{aligned}
& \text { 1. } A+B=B+A \\
& \text { 2. }(A+B)+C=A+(B+C) \\
& \text { 3. }(A B) C=A(B C) \\
& \text { 4. } A(B+C)=A B+A C \\
& \text { 5. }(B+C) A=B A+C A \\
& \text { 6. }(\alpha \beta) A=\alpha(\beta A) \\
& \text { 7. } \alpha(A B)=(\alpha A) B=A(\alpha B) \\
& \text { 8. } \alpha(A+B)=\alpha A+\alpha B \\
& \text { 9. }(\alpha+\beta) A=\alpha A+\beta A
\end{aligned}
$$

Some other formulas, assuming that A, B and C are matrices whose sizes permit the inticated operations, and α and β are scalars:

$$
\begin{aligned}
& \text { 1. } A+B=B+A \\
& \text { 2. }(A+B)+C=A+(B+C) \\
& \text { 3. }(A B) C=A(B C) \\
& \text { 4. } A(B+C)=A B+A C \\
& \text { 5. }(B+C) A=B A+C A \\
& \text { 6. }(\alpha \beta) A=\alpha(\beta A) \\
& \text { 7. } \alpha(A B)=(\alpha A) B=A(\alpha B) \\
& \text { 8. } \alpha(A+B)=\alpha A+\alpha B \\
& \text { 9. }(\alpha+\beta) A=\alpha A+\beta A \\
& \text { 10. } A+\mathcal{O}=A
\end{aligned}
$$

Some other formulas, assuming that A, B and C are matrices whose sizes permit the inticated operations, and α and β are scalars:

$$
\begin{aligned}
& \text { 1. } \\
& \text { 2. } \\
& \text { 2. } \\
& \text { 3. } \\
& \text { 4. }
\end{aligned}(A B) C=B+A=A(B C)+(B+C)
$$

Note that we do not always have $A B=B A$. Here is a simple example:
If we let $A=\left(\begin{array}{ll}1 & 0 \\ 2 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ then

$$
A B=\left(\begin{array}{ll}
0 & 1 \\
0 & 2
\end{array}\right) \quad \text { but } \quad B A=\left(\begin{array}{ll}
2 & 0 \\
1 & 0
\end{array}\right)
$$

There is no matrix division, but for some matrices there will be a multiplicative inverse.

There is no matrix division, but for some matrices there will be a multiplicative inverse.

Definition

If A is a square matrix $(n \times n)$ and if there is another $n \times n$ matrix B that satisfies $A B=I=B A$, then we say A is invertible and B is its inverse. We write $B=A^{-1}$.

There is no matrix division, but for some matrices there will be a multiplicative inverse.

Definition

If A is a square matrix $(n \times n)$ and if there is another $n \times n$ matrix B that satisfies $A B=I=B A$, then we say A is invertible and B is its inverse. We write $B=A^{-1}$.
(Note: when the size is obvious, we will write just I instead of I_{n}.)

There is no matrix division, but for some matrices there will be a multiplicative inverse.

Definition

If A is a square matrix $(n \times n)$ and if there is another $n \times n$ matrix B that satisfies $A B=I=B A$, then we say A is invertible and B is its inverse. We write $B=A^{-1}$.
(Note: when the size is obvious, we will write just I instead of I_{n}.) Another name for invertible is nonsingular.

There is no matrix division, but for some matrices there will be a multiplicative inverse.

Definition

If A is a square matrix $(n \times n)$ and if there is another $n \times n$ matrix B that satisfies $A B=I=B A$, then we say A is invertible and B is its inverse. We write $B=A^{-1}$.
(Note: when the size is obvious, we will write just I instead of I_{n}.) Another name for invertible is nonsingular.

$$
\text { The matrix } A=\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right) \quad \text { is not invertible. }
$$

There is no matrix division, but for some matrices there will be a multiplicative inverse.

Definition

If A is a square matrix $(n \times n)$ and if there is another $n \times n$ matrix B that satisfies $A B=I=B A$, then we say A is invertible and B is its inverse. We write $B=A^{-1}$.
(Note: when the size is obvious, we will write just I instead of I_{n}.)
Another name for invertible is nonsingular.

$$
\text { The matrix } A=\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right) \text { is not invertible. }
$$

For example, if we consider the equation $A B=I$ it would look something like this:

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Computing $A B$ and equating it to I, we get

$$
\left(\begin{array}{ll}
a & b \\
a & b
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Computing $A B$ and equating it to I, we get

$$
\left(\begin{array}{ll}
a & b \\
a & b
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

This has no solution because no choice of a, b, c, d will make all 4 equations $a=1, b=0, a=0, b=1$ true.

Computing $A B$ and equating it to I, we get

$$
\left(\begin{array}{ll}
a & b \\
a & b
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

This has no solution because no choice of a, b, c, d will make all 4 equations $a=1, b=0, a=0, b=1$ true.
If A has an inverse, and we are able to compute it, then we have an advantage in solving systems of equations. Every system can be expressed as a matrix equation $A \mathbf{x}=\mathbf{b}$. If A is invertible, then

$$
\mathbf{x}=I \mathbf{x}=\left(A^{-1} A\right) \mathbf{x}=A^{-1}(A \mathbf{x})=A^{-1} \mathbf{b}
$$

Computing $A B$ and equating it to I, we get

$$
\left(\begin{array}{ll}
a & b \\
a & b
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

This has no solution because no choice of a, b, c, d will make all 4 equations $a=1, b=0, a=0, b=1$ true.
If A has an inverse, and we are able to compute it, then we have an advantage in solving systems of equations. Every system can be expressed as a matrix equation $A \mathbf{x}=\mathbf{b}$. If A is invertible, then

$$
\mathbf{x}=I \mathbf{x}=\left(A^{-1} A\right) \mathbf{x}=A^{-1}(A \mathbf{x})=A^{-1} \mathbf{b}
$$

Properties of inverses

If A is invertible then so is A^{-1} and the inverse of A^{-1} is A.

Computing $A B$ and equating it to I, we get

$$
\left(\begin{array}{ll}
a & b \\
a & b
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

This has no solution because no choice of a, b, c, d will make all 4 equations $a=1, b=0, a=0, b=1$ true.
If A has an inverse, and we are able to compute it, then we have an advantage in solving systems of equations. Every system can be expressed as a matrix equation $A \mathbf{x}=\mathbf{b}$. If A is invertible, then

$$
\mathbf{x}=I \mathbf{x}=\left(A^{-1} A\right) \mathbf{x}=A^{-1}(A \mathbf{x})=A^{-1} \mathbf{b}
$$

Properties of inverses

If A is invertible then so is A^{-1} and the inverse of A^{-1} is A.
If A and B are invertible then so is $A B$, and the inverse of $A B$ is $B^{-1} A^{-1}$.

To see this we only have to verify that $(A B)\left(B^{-1} A^{-1}\right)=I$ and $\left(B^{-1} A^{-1}\right)(A B)=I$.
Attacking the first, we just apply the regrouping property a couple of times and then simplify:

To see this we only have to verify that $(A B)\left(B^{-1} A^{-1}\right)=I$ and $\left(B^{-1} A^{-1}\right)(A B)=I$.
Attacking the first, we just apply the regrouping property a couple of times and then simplify:

$$
\begin{aligned}
(A B)\left(B^{-1} A^{-1}\right)=A(B & \left.\left(B^{-1} A^{-1}\right)\right) \\
& =A\left(\left(B B^{-1}\right) A^{-1}\right)=A\left(I A^{-1}\right)=A A^{-1}=I
\end{aligned}
$$

To see this we only have to verify that $(A B)\left(B^{-1} A^{-1}\right)=I$ and $\left(B^{-1} A^{-1}\right)(A B)=I$.
Attacking the first, we just apply the regrouping property a couple of times and then simplify:

$$
\begin{aligned}
(A B)\left(B^{-1} A^{-1}\right)=A(B & \left.\left(B^{-1} A^{-1}\right)\right) \\
& =A\left(\left(B B^{-1}\right) A^{-1}\right)=A\left(I A^{-1}\right)=A A^{-1}=I
\end{aligned}
$$

The other equation is similar.

To see this we only have to verify that $(A B)\left(B^{-1} A^{-1}\right)=I$ and $\left(B^{-1} A^{-1}\right)(A B)=I$.
Attacking the first, we just apply the regrouping property a couple of times and then simplify:

$$
\begin{aligned}
(A B)\left(B^{-1} A^{-1}\right)=A(B & \left.\left(B^{-1} A^{-1}\right)\right) \\
& =A\left(\left(B B^{-1}\right) A^{-1}\right)=A\left(I A^{-1}\right)=A A^{-1}=I
\end{aligned}
$$

The other equation is similar.
Because of the regrouping property the parentheses are unnecessary in a string of multiplications. That is $(A B)(C D)$ could just as we be written $A B C D$. This simplifies some calculations:

$$
A B B^{-1} A^{-1}=A I A^{-1}=A A^{-1}=I
$$

The transpose of a matrix

Definition

If A is an $n \times k$ matrix then A^{T}, called the transpose of A, denotes the $k \times n$ matrix whose $i j$ entry is $a_{j i}$.

The transpose of a matrix

Definition

If A is an $n \times k$ matrix then A^{T}, called the transpose of A, denotes the $k \times n$ matrix whose $i j$ entry is $a_{j i}$.

Note that the transpose of a row vector is a column vector and vice versa:

$$
\left(\begin{array}{cccc}
a_{1} & a_{2} & \cdots & a_{k}
\end{array}\right)^{T}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{k}
\end{array}\right) \quad \text { and }
$$

$$
\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{k}
\end{array}\right)^{T}=\left(\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{k}
\end{array}\right)
$$

To get A^{T} from A simply take each row of A and make it the corresponding column of A^{T} :

To get A^{T} from A simply take each row of A and make it the corresponding column of A^{T} :

$$
\text { Example: } \quad\left(\begin{array}{ccc}
1 & 2 & 3 \\
6 & 5 & 4
\end{array}\right)^{T}=\left(\begin{array}{cc}
1 & 6 \\
2 & 5 \\
3 & 4
\end{array}\right)
$$

To get A^{T} from A simply take each row of A and make it the corresponding column of A^{T} :

$$
\text { Example: } \quad\left(\begin{array}{ccc}
1 & 2 & 3 \\
6 & 5 & 4
\end{array}\right)^{T}=\left(\begin{array}{cc}
1 & 6 \\
2 & 5 \\
3 & 4
\end{array}\right)
$$

Properties of the transpose

1. $\left(A^{T}\right)^{T}=A$
2. $(\alpha A)^{T}=\alpha A^{T}$
3. $(A+B)^{T}=A^{T}+B^{T}$
4. $(A B)^{T}=B^{T} A^{T}$
5. $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$

To get A^{T} from A simply take each row of A and make it the corresponding column of A^{T} :

$$
\text { Example: } \quad\left(\begin{array}{ccc}
1 & 2 & 3 \\
6 & 5 & 4
\end{array}\right)^{T}=\left(\begin{array}{cc}
1 & 6 \\
2 & 5 \\
3 & 4
\end{array}\right)
$$

Properties of the transpose

1. $\left(A^{T}\right)^{T}=A$
2. $(\alpha A)^{T}=\alpha A^{T}$
3. $(A+B)^{T}=A^{T}+B^{T}$
4. $(A B)^{T}=B^{T} A^{T}$
5. $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$

The transpose allows us to multiply vectors together: If \mathbf{a} and \mathbf{b} are column vectors, we get an inner product from $\mathbf{a}^{T} \mathbf{b}$ and an outer product from $\mathbf{a b}^{T}$.

