Matrices, cont.

D. H. Luecking

29 Jan 2024

A zero matrix, designated \mathcal{O} , is one with zeros in every position. When necessary we'll write $\mathcal{O}_{n \times k}$ to indicate its size.

A zero matrix, designated \mathcal{O} , is one with zeros in every position. When necessary we'll write $\mathcal{O}_{n \times k}$ to indicate its size. Its special property is that $A + \mathcal{O} = A$ for every matrix A that is the same size as \mathcal{O} . Also $\mathcal{O}_{n \times k} A_{k \times m} = \mathcal{O}_{n \times m}$

A zero matrix, designated \mathcal{O} , is one with zeros in every position. When necessary we'll write $\mathcal{O}_{n \times k}$ to indicate its size. Its special property is that $A + \mathcal{O} = A$ for every matrix A that is the same size as \mathcal{O} . Also $\mathcal{O}_{n \times k} A_{k \times m} = \mathcal{O}_{n \times m}$

For every k there is a $k \times k$ matrix called I_k which has zeros in every position except 1s on the diagonal from upper left to lower right.

A zero matrix, designated \mathcal{O} , is one with zeros in every position. When necessary we'll write $\mathcal{O}_{n \times k}$ to indicate its size. Its special property is that $A + \mathcal{O} = A$ for every matrix A that is the same size as \mathcal{O} . Also $\mathcal{O}_{n \times k} A_{k \times m} = \mathcal{O}_{n \times m}$

For every k there is a $k \times k$ matrix called I_k which has zeros in every position except 1s on the diagonal from upper left to lower right. If the entries of I_k are called δ_{ij} , then $\delta_{ii} = 1$ for every i and $\delta_{ij} = 0$ for every $i \neq j$.

A zero matrix, designated \mathcal{O} , is one with zeros in every position. When necessary we'll write $\mathcal{O}_{n \times k}$ to indicate its size. Its special property is that $A + \mathcal{O} = A$ for every matrix A that is the same size as \mathcal{O} . Also $\mathcal{O}_{n \times k} A_{k \times m} = \mathcal{O}_{n \times m}$

For every k there is a $k \times k$ matrix called I_k which has zeros in every position except 1s on the diagonal from upper left to lower right. If the entries of I_k are called δ_{ij} , then $\delta_{ii} = 1$ for every i and $\delta_{ij} = 0$ for every $i \neq j$. If A is $n \times k$ and B is $k \times m$ then $AI_k = A$ and $I_kB = B$. If C is $k \times k$ then $I_kC = CI_k = C$.

A zero matrix, designated \mathcal{O} , is one with zeros in every position. When necessary we'll write $\mathcal{O}_{n \times k}$ to indicate its size. Its special property is that $A + \mathcal{O} = A$ for every matrix A that is the same size as \mathcal{O} . Also $\mathcal{O}_{n \times k} A_{k \times m} = \mathcal{O}_{n \times m}$

For every k there is a $k \times k$ matrix called I_k which has zeros in every position except 1s on the diagonal from upper left to lower right. If the entries of I_k are called δ_{ij} , then $\delta_{ii} = 1$ for every i and $\delta_{ij} = 0$ for every $i \neq j$. If A is $n \times k$ and B is $k \times m$ then $AI_k = A$ and $I_kB = B$. If C is $k \times k$ then $I_kC = CI_k = C$.

Matrix algebra

If $A = (a_{ij})_{n \times k}$ and $B = (b_{ij})_{k \times m}$, then the entries of AB are

$$\vec{\mathbf{a}}_{i}\mathbf{b}_{j} = \begin{pmatrix} a_{i1} & a_{i2} & \cdots & a_{ik} \end{pmatrix} \begin{pmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{kj} \end{pmatrix} = \sum_{p=1}^{k} a_{ip}b_{pj}$$

A zero matrix, designated \mathcal{O} , is one with zeros in every position. When necessary we'll write $\mathcal{O}_{n \times k}$ to indicate its size. Its special property is that $A + \mathcal{O} = A$ for every matrix A that is the same size as \mathcal{O} . Also $\mathcal{O}_{n \times k} A_{k \times m} = \mathcal{O}_{n \times m}$

For every k there is a $k \times k$ matrix called I_k which has zeros in every position except 1s on the diagonal from upper left to lower right. If the entries of I_k are called δ_{ij} , then $\delta_{ii} = 1$ for every i and $\delta_{ij} = 0$ for every $i \neq j$. If A is $n \times k$ and B is $k \times m$ then $AI_k = A$ and $I_kB = B$. If C is $k \times k$ then $I_kC = CI_k = C$.

Matrix algebra

If $A=(a_{ij})_{n\times k}$ and $B=(b_{ij})_{k\times m},$ then the entries of AB are

$$\vec{\mathbf{a}}_{i}\mathbf{b}_{j} = \left(\begin{array}{ccc} a_{i1} & a_{i2} & \cdots & a_{ik} \end{array}\right) \left(\begin{array}{c} b_{1j} \\ b_{2j} \\ \vdots \\ b_{kj} \end{array}\right) = \sum_{p=1}^{k} a_{ip}b_{pj}$$

It follows from this that if C is also $k \times m$ then A(B + C) = AB + AC.

1.
$$A + B = B + A$$

1.
$$A + B = B + A$$

2. $(A + B) + C = A + (B + C)$

1.
$$A + B = B + A$$

2. $(A + B) + C = A + (B + C)$
3. $(AB)C = A(BC)$

1.
$$A + B = B + A$$

2. $(A + B) + C = A + (B + C)$
3. $(AB)C = A(BC)$
4. $A(B + C) = AB + AC$

1.
$$A + B = B + A$$

2. $(A + B) + C = A + (B + C)$
3. $(AB)C = A(BC)$
4. $A(B + C) = AB + AC$
5. $(B + C)A = BA + CA$

1.
$$A + B = B + A$$

2. $(A + B) + C = A + (B + C)$
3. $(AB)C = A(BC)$
4. $A(B + C) = AB + AC$
5. $(B + C)A = BA + CA$
6. $(\alpha\beta)A = \alpha(\beta A)$

1.
$$A + B = B + A$$

2. $(A + B) + C = A + (B + C)$
3. $(AB)C = A(BC)$
4. $A(B + C) = AB + AC$
5. $(B + C)A = BA + CA$
6. $(\alpha\beta)A = \alpha(\beta A)$
7. $\alpha(AB) = (\alpha A)B = A(\alpha B)$

1.
$$A + B = B + A$$

2. $(A + B) + C = A + (B + C)$
3. $(AB)C = A(BC)$
4. $A(B + C) = AB + AC$
5. $(B + C)A = BA + CA$
6. $(\alpha\beta)A = \alpha(\beta A)$
7. $\alpha(AB) = (\alpha A)B = A(\alpha B)$
8. $\alpha(A + B) = \alpha A + \alpha B$

1.
$$A + B = B + A$$

2. $(A + B) + C = A + (B + C)$
3. $(AB)C = A(BC)$
4. $A(B + C) = AB + AC$
5. $(B + C)A = BA + CA$
6. $(\alpha\beta)A = \alpha(\beta A)$
7. $\alpha(AB) = (\alpha A)B = A(\alpha B)$
8. $\alpha(A + B) = \alpha A + \alpha B$
9. $(\alpha + \beta)A = \alpha A + \beta A$

1.
$$A + B = B + A$$

2. $(A + B) + C = A + (B + C)$
3. $(AB)C = A(BC)$
4. $A(B + C) = AB + AC$
5. $(B + C)A = BA + CA$
6. $(\alpha\beta)A = \alpha(\beta A)$
7. $\alpha(AB) = (\alpha A)B = A(\alpha B)$
8. $\alpha(A + B) = \alpha A + \alpha B$
9. $(\alpha + \beta)A = \alpha A + \beta A$
10. $A + O = A$

1.
$$A + B = B + A$$

2. $(A + B) + C = A + (B + C)$
3. $(AB)C = A(BC)$
4. $A(B + C) = AB + AC$
5. $(B + C)A = BA + CA$
6. $(\alpha\beta)A = \alpha(\beta A)$
7. $\alpha(AB) = (\alpha A)B = A(\alpha B)$
8. $\alpha(A + B) = \alpha A + \alpha B$
9. $(\alpha + \beta)A = \alpha A + \beta A$
10. $A + O = A$

Note that we *do not* always have AB = BA. Here is a simple example:

If we let
$$A = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ then
 $AB = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}$ but $BA = \begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix}$

Definition

If A is a square matrix $(n \times n)$ and if there is another $n \times n$ matrix B that satisfies AB = I = BA, then we say A is *invertible* and B is its inverse. We write $B = A^{-1}$.

Definition

If A is a square matrix $(n \times n)$ and if there is another $n \times n$ matrix B that satisfies AB = I = BA, then we say A is *invertible* and B is its inverse. We write $B = A^{-1}$.

(Note: when the size is obvious, we will write just I instead of I_{n} .)

Definition

If A is a square matrix $(n \times n)$ and if there is another $n \times n$ matrix B that satisfies AB = I = BA, then we say A is *invertible* and B is its inverse. We write $B = A^{-1}$.

(Note: when the size is obvious, we will write just I instead of I_n .) Another name for invertible is *nonsingular*.

Definition

If A is a square matrix $(n \times n)$ and if there is another $n \times n$ matrix B that satisfies AB = I = BA, then we say A is *invertible* and B is its inverse. We write $B = A^{-1}$.

(Note: when the size is obvious, we will write just I instead of I_n .) Another name for invertible is *nonsingular*.

The matrix
$$A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$
 is not invertible.

Definition

If A is a square matrix $(n \times n)$ and if there is another $n \times n$ matrix B that satisfies AB = I = BA, then we say A is *invertible* and B is its inverse. We write $B = A^{-1}$.

(Note: when the size is obvious, we will write just I instead of I_n .) Another name for invertible is *nonsingular*.

The matrix
$$A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$
 is not invertible.

For example, if we consider the equation AB = I it would look something like this:

$$\left(\begin{array}{cc}1&0\\1&0\end{array}\right)\left(\begin{array}{cc}a&b\\c&d\end{array}\right)=\left(\begin{array}{cc}1&0\\0&1\end{array}\right)$$

$$\left(\begin{array}{cc}a&b\\a&b\end{array}\right) = \left(\begin{array}{cc}1&0\\0&1\end{array}\right)$$

$$\left(\begin{array}{cc}a&b\\a&b\end{array}\right) = \left(\begin{array}{cc}1&0\\0&1\end{array}\right)$$

This has no solution because no choice of a, b, c, d will make all 4 equations a = 1, b = 0, a = 0, b = 1 true.

$$\left(\begin{array}{cc}a&b\\a&b\end{array}\right) = \left(\begin{array}{cc}1&0\\0&1\end{array}\right)$$

This has no solution because no choice of a, b, c, d will make all 4 equations a = 1, b = 0, a = 0, b = 1 true.

If A has an inverse, and we are able to compute it, then we have an advantage in solving systems of equations. Every system can be expressed as a matrix equation $A\mathbf{x} = \mathbf{b}$. If A is invertible, then

$$\mathbf{x} = I\mathbf{x} = (A^{-1}A)\mathbf{x} = A^{-1}(A\mathbf{x}) = A^{-1}\mathbf{b}$$

$$\left(\begin{array}{cc}a&b\\a&b\end{array}\right) = \left(\begin{array}{cc}1&0\\0&1\end{array}\right)$$

This has no solution because no choice of a, b, c, d will make all 4 equations a = 1, b = 0, a = 0, b = 1 true.

If A has an inverse, and we are able to compute it, then we have an advantage in solving systems of equations. Every system can be expressed as a matrix equation $A\mathbf{x} = \mathbf{b}$. If A is invertible, then

$$\mathbf{x} = I\mathbf{x} = (A^{-1}A)\mathbf{x} = A^{-1}(A\mathbf{x}) = A^{-1}\mathbf{b}$$

Properties of inverses

If A is invertible then so is A^{-1} and the inverse of A^{-1} is A.

$$\left(\begin{array}{cc}a&b\\a&b\end{array}\right) = \left(\begin{array}{cc}1&0\\0&1\end{array}\right)$$

This has no solution because no choice of a, b, c, d will make all 4 equations a = 1, b = 0, a = 0, b = 1 true.

If A has an inverse, and we are able to compute it, then we have an advantage in solving systems of equations. Every system can be expressed as a matrix equation $A\mathbf{x} = \mathbf{b}$. If A is invertible, then

$$\mathbf{x} = I\mathbf{x} = (A^{-1}A)\mathbf{x} = A^{-1}(A\mathbf{x}) = A^{-1}\mathbf{b}$$

Properties of inverses

If A is invertible then so is A^{-1} and the inverse of A^{-1} is A.

If A and B are invertible then so is AB, and the inverse of AB is $B^{-1}A^{-1}$.

To see this we only have to verify that $(AB)(B^{-1}A^{-1}) = I$ and $(B^{-1}A^{-1})(AB) = I$.

Attacking the first, we just apply the regrouping property a couple of times and then simplify:

To see this we only have to verify that $(AB)(B^{-1}A^{-1})=I$ and $(B^{-1}A^{-1})(AB)=I.$

Attacking the first, we just apply the regrouping property a couple of times and then simplify:

$$\begin{split} (AB)(B^{-1}A^{-1}) &= A(B(B^{-1}A^{-1})) \\ &= A((BB^{-1})A^{-1}) = A(IA^{-1}) = AA^{-1} = I. \end{split}$$

To see this we only have to verify that $(AB)(B^{-1}A^{-1})=I$ and $(B^{-1}A^{-1})(AB)=I.$

Attacking the first, we just apply the regrouping property a couple of times and then simplify:

$$\begin{split} (AB)(B^{-1}A^{-1}) &= A(B(B^{-1}A^{-1})) \\ &= A((BB^{-1})A^{-1}) = A(IA^{-1}) = AA^{-1} = I. \end{split}$$

The other equation is similar.

To see this we only have to verify that $(AB)(B^{-1}A^{-1}) = I$ and $(B^{-1}A^{-1})(AB) = I$.

Attacking the first, we just apply the regrouping property a couple of times and then simplify:

$$(AB)(B^{-1}A^{-1}) = A(B(B^{-1}A^{-1}))$$

= $A((BB^{-1})A^{-1}) = A(IA^{-1}) = AA^{-1} = I.$

The other equation is similar.

Because of the regrouping property the parentheses are unnecessary in a string of multiplications. That is (AB)(CD) could just as we be written ABCD. This simplifies some calculations:

$$ABB^{-1}A^{-1} = AIA^{-1} = AA^{-1} = I.$$

The transpose of a matrix

Definition

If A is an $n \times k$ matrix then A^T , called the *transpose of* A, denotes the $k \times n$ matrix whose ij entry is a_{ji} .

The transpose of a matrix

Definition

If A is an $n \times k$ matrix then A^T , called the *transpose of* A, denotes the $k \times n$ matrix whose ij entry is a_{ji} .

Note that the transpose of a row vector is a column vector and vice versa:

$$\left(\begin{array}{ccc} a_1 & a_2 & \cdots & a_k \end{array}\right)^T = \left(\begin{array}{c} a_1 \\ a_2 \\ \vdots \\ a_k \end{array}\right) \text{ and}$$
$$\left(\begin{array}{c} a_1 \\ a_2 \\ \vdots \\ a_k \end{array}\right)^T = \left(\begin{array}{ccc} a_1 & a_2 & \cdots & a_k \end{array}\right)$$

Example:
$$\begin{pmatrix} 1 & 2 & 3 \\ 6 & 5 & 4 \end{pmatrix}^T = \begin{pmatrix} 1 & 6 \\ 2 & 5 \\ 3 & 4 \end{pmatrix}$$

Example:
$$\begin{pmatrix} 1 & 2 & 3 \\ 6 & 5 & 4 \end{pmatrix}^T = \begin{pmatrix} 1 & 6 \\ 2 & 5 \\ 3 & 4 \end{pmatrix}$$

Properties of the transpose

1.
$$(A^T)^T = A$$

2. $(\alpha A)^T = \alpha A^T$
3. $(A + B)^T = A^T + B^T$
4. $(AB)^T = B^T A^T$
5. $(A^{-1})^T = (A^T)^{-1}$

Example:
$$\begin{pmatrix} 1 & 2 & 3 \\ 6 & 5 & 4 \end{pmatrix}^T = \begin{pmatrix} 1 & 6 \\ 2 & 5 \\ 3 & 4 \end{pmatrix}$$

Properties of the transpose

1. $(A^T)^T = A$ 2. $(\alpha A)^T = \alpha A^T$ 3. $(A + B)^T = A^T + B^T$ 4. $(AB)^T = B^T A^T$ 5. $(A^{-1})^T = (A^T)^{-1}$

The transpose allows us to multiply vectors together: If \mathbf{a} and \mathbf{b} are column vectors, we get an inner product from $\mathbf{a}^T \mathbf{b}$ and an outer product from $\mathbf{a} \mathbf{b}^T$.