Matrices

D. H. Luecking

26 Jan 2024

Homogeneous Systems

A system of equations in standard form is called homogeneous if the right side of every equation is 0 .

Homogeneous Systems

A system of equations in standard form is called homogeneous if the right side of every equation is 0 . The last column of its augmented matrix is a column of zeros.

Homogeneous Systems

A system of equations in standard form is called homogeneous if the right side of every equation is 0 . The last column of its augmented matrix is a column of zeros. Since none of the EROs will change these zeros to something else, the echelon form will never have a row with zeros in the system part and nonzero in the augmented part.

Homogeneous Systems

A system of equations in standard form is called homogeneous if the right side of every equation is 0 . The last column of its augmented matrix is a column of zeros. Since none of the EROs will change these zeros to something else, the echelon form will never have a row with zeros in the system part and nonzero in the augmented part. In fact, every homogeneous system has at least one solution, namely $(0,0, \ldots, 0)$.

Homogeneous Systems

A system of equations in standard form is called homogeneous if the right side of every equation is 0 . The last column of its augmented matrix is a column of zeros. Since none of the EROs will change these zeros to something else, the echelon form will never have a row with zeros in the system part and nonzero in the augmented part. In fact, every homogeneous system has at least one solution, namely $(0,0, \ldots, 0)$.

Standard notations for matrices

We can address the elements (or entries) in a matrix by specifying the row and the column of that entry (always in that order).

Homogeneous Systems

A system of equations in standard form is called homogeneous if the right side of every equation is 0 . The last column of its augmented matrix is a column of zeros. Since none of the EROs will change these zeros to something else, the echelon form will never have a row with zeros in the system part and nonzero in the augmented part. In fact, every homogeneous system has at least one solution, namely $(0,0, \ldots, 0)$.

Standard notations for matrices

We can address the elements (or entries) in a matrix by specifying the row and the column of that entry (always in that order). If we say the $i j$-entry, we mean the entry in row i and column j.

Homogeneous Systems

A system of equations in standard form is called homogeneous if the right side of every equation is 0 . The last column of its augmented matrix is a column of zeros. Since none of the EROs will change these zeros to something else, the echelon form will never have a row with zeros in the system part and nonzero in the augmented part. In fact, every homogeneous system has at least one solution, namely $(0,0, \ldots, 0)$.

Standard notations for matrices

We can address the elements (or entries) in a matrix by specifying the row and the column of that entry (always in that order). If we say the $i j$-entry, we mean the entry in row i and column j. For example, an $n \times k$ matrix with unspecified entries would look like

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 k} \\
a_{21} & a_{22} & \cdots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n k}
\end{array}\right)
$$

Thus, the $i j$-entry is $a_{i j}$ and this is sometimes abbreviated $A=\left(a_{i j}\right)$.

In fact, if we state that B and C are matrices and talk about $b_{i j}$ or $c_{i j}$, we will understand that $b_{i j}$ are entries of B and $c_{i j}$ are entries of C.

In fact, if we state that B and C are matrices and talk about $b_{i j}$ or $c_{i j}$, we will understand that $b_{i j}$ are entries of B and $c_{i j}$ are entries of C. If we then write, for example $D=\left(b_{i j}+c_{i j}\right)$, this will mean we have created a new matrix D whose entries are the sums of corresponding entries in B and C.

In fact, if we state that B and C are matrices and talk about $b_{i j}$ or $c_{i j}$, we will understand that $b_{i j}$ are entries of B and $c_{i j}$ are entries of C. If we then write, for example $D=\left(b_{i j}+c_{i j}\right)$, this will mean we have created a new matrix D whose entries are the sums of corresponding entries in B and C.
Matrices with only one row ($1 \times k$ matrices) or only one column ($n \times 1$ matrices) are called vectors.

In fact, if we state that B and C are matrices and talk about $b_{i j}$ or $c_{i j}$, we will understand that $b_{i j}$ are entries of B and $c_{i j}$ are entries of C. If we then write, for example $D=\left(b_{i j}+c_{i j}\right)$, this will mean we have created a new matrix D whose entries are the sums of corresponding entries in B and C.

Matrices with only one row ($1 \times k$ matrices) or only one column ($n \times 1$ matrices) are called vectors. The one-row matrices are row vectors and the one-column matrices are column vectors.

In fact, if we state that B and C are matrices and talk about $b_{i j}$ or $c_{i j}$, we will understand that $b_{i j}$ are entries of B and $c_{i j}$ are entries of C. If we then write, for example $D=\left(b_{i j}+c_{i j}\right)$, this will mean we have created a new matrix D whose entries are the sums of corresponding entries in B and C.

Matrices with only one row ($1 \times k$ matrices) or only one column ($n \times 1$ matrices) are called vectors. The one-row matrices are row vectors and the one-column matrices are column vectors.
An important example of a row vector is the solution of a system.

In fact, if we state that B and C are matrices and talk about $b_{i j}$ or $c_{i j}$, we will understand that $b_{i j}$ are entries of B and $c_{i j}$ are entries of C.
If we then write, for example $D=\left(b_{i j}+c_{i j}\right)$, this will mean we have created a new matrix D whose entries are the sums of corresponding entries in B and C.

Matrices with only one row ($1 \times k$ matrices) or only one column ($n \times 1$ matrices) are called vectors. The one-row matrices are row vectors and the one-column matrices are column vectors.
An important example of a row vector is the solution of a system. As we've seen, the solution of

$$
\begin{aligned}
& 2 x_{1}-x_{2}=3 \\
& 3 x_{1}+2 x_{2}=1
\end{aligned}
$$

is $(1,-1)$.

In fact, if we state that B and C are matrices and talk about $b_{i j}$ or $c_{i j}$, we will understand that $b_{i j}$ are entries of B and $c_{i j}$ are entries of C. If we then write, for example $D=\left(b_{i j}+c_{i j}\right)$, this will mean we have created a new matrix D whose entries are the sums of corresponding entries in B and C.

Matrices with only one row ($1 \times k$ matrices) or only one column ($n \times 1$ matrices) are called vectors. The one-row matrices are row vectors and the one-column matrices are column vectors.
An important example of a row vector is the solution of a system. As we've seen, the solution of

$$
\begin{aligned}
& 2 x_{1}-x_{2}=3 \\
& 3 x_{1}+2 x_{2}=1
\end{aligned}
$$

is $(1,-1)$. But from now on, we will allow a solution to be written as a vector: $\binom{1}{-1}$ or $\left(\begin{array}{ll}1 & -1\end{array}\right)$ instead of $(1,-1)$.

Our book uses the following default notations: capital letters represent matrices. Bold lower case letters represent column vectors and an arrow over a lower case letter represents a row vector.

Our book uses the following default notations: capital letters represent matrices. Bold lower case letters represent column vectors and an arrow over a lower case letter represents a row vector. Examples:
$A=\left(\begin{array}{rrr}2 & -1 & 0 \\ 3 & 2 & 1 \\ 0 & 5 & 2\end{array}\right), \quad \mathbf{a}_{1}=\left(\begin{array}{l}2 \\ 3 \\ 0\end{array}\right), \quad \overrightarrow{\mathbf{a}}_{2}=(3,2,1)$ or $\left(\begin{array}{lll}3 & 2 & 1\end{array}\right)$

Our book uses the following default notations: capital letters represent matrices. Bold lower case letters represent column vectors and an arrow over a lower case letter represents a row vector. Examples:
$A=\left(\begin{array}{rrr}2 & -1 & 0 \\ 3 & 2 & 1 \\ 0 & 5 & 2\end{array}\right), \quad \mathbf{a}_{1}=\left(\begin{array}{l}2 \\ 3 \\ 0\end{array}\right), \quad \overrightarrow{\mathbf{a}}_{2}=(3,2,1)$ or $\left(\begin{array}{lll}3 & 2 & 1\end{array}\right)$
The above illustrates a convention our book uses: If a matrix is specified, the corresponding bold lower case letter with a subscript represents the corresponding column of the matrix.

Our book uses the following default notations: capital letters represent matrices. Bold lower case letters represent column vectors and an arrow over a lower case letter represents a row vector. Examples:
$A=\left(\begin{array}{rrr}2 & -1 & 0 \\ 3 & 2 & 1 \\ 0 & 5 & 2\end{array}\right), \quad \mathbf{a}_{1}=\left(\begin{array}{l}2 \\ 3 \\ 0\end{array}\right), \quad \overrightarrow{\mathbf{a}}_{2}=(3,2,1)$ or $\left(\begin{array}{lll}3 & 2 & 1\end{array}\right)$
The above illustrates a convention our book uses: If a matrix is specified, the corresponding bold lower case letter with a subscript represents the corresponding column of the matrix. If there is an arrow over the letter, that represents the corresponding row.

Our book uses the following default notations: capital letters represent matrices. Bold lower case letters represent column vectors and an arrow over a lower case letter represents a row vector. Examples:

$$
A=\left(\begin{array}{rrr}
2 & -1 & 0 \\
3 & 2 & 1 \\
0 & 5 & 2
\end{array}\right), \quad \mathbf{a}_{1}=\left(\begin{array}{l}
2 \\
3 \\
0
\end{array}\right), \quad \overrightarrow{\mathbf{a}}_{2}=(3,2,1) \text { or }\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)
$$

The above illustrates a convention our book uses: If a matrix is specified, the corresponding bold lower case letter with a subscript represents the corresponding column of the matrix. If there is an arrow over the letter, that represents the corresponding row. Finally, we can represent a matrix as a list of column vectors or a stack of row vectors as follows

$$
A=\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{k}\right), \text { or }\left(\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{k}
\end{array}\right), \quad B=\left(\begin{array}{c}
\overrightarrow{\mathbf{b}}_{1} \\
\overrightarrow{\mathbf{b}}_{2} \\
\vdots \\
\overrightarrow{\mathbf{b}}_{n}
\end{array}\right)
$$

Arithmetic with matrices

If α is any real number and A is a matrix, then αA is the matrix where every entry of A is multiplied by α.

Arithmetic with matrices

If α is any real number and A is a matrix, then αA is the matrix where every entry of A is multiplied by α. This is called scalar multiplication because a real number is also known as a scalar, especially in this context.

Arithmetic with matrices

If α is any real number and A is a matrix, then αA is the matrix where every entry of A is multiplied by α. This is called scalar multiplication because a real number is also known as a scalar, especially in this context. So, if $A=\left(a_{i j}\right)$ then $\alpha A=\left(\alpha a_{i j}\right)$.

Arithmetic with matrices

If α is any real number and A is a matrix, then αA is the matrix where every entry of A is multiplied by α. This is called scalar multiplication because a real number is also known as a scalar, especially in this context. So, if $A=\left(a_{i j}\right)$ then $\alpha A=\left(\alpha a_{i j}\right)$.

Example: $\quad(1 / 2)\left(\begin{array}{rr}2 & 4 \\ -1 & 6\end{array}\right)=\left(\begin{array}{cc}1 & 2 \\ -1 / 2 & 3\end{array}\right)$

Arithmetic with matrices

If α is any real number and A is a matrix, then αA is the matrix where every entry of A is multiplied by α. This is called scalar multiplication because a real number is also known as a scalar, especially in this context. So, if $A=\left(a_{i j}\right)$ then $\alpha A=\left(\alpha a_{i j}\right)$.

$$
\text { Example: } \quad(1 / 2)\left(\begin{array}{rr}
2 & 4 \\
-1 & 6
\end{array}\right)=\left(\begin{array}{cc}
1 & 2 \\
-1 / 2 & 3
\end{array}\right)
$$

If A and B are both $n \times k$ matrices then $A+B$ is the matrix in which every entry of A is added to the corresponding entry of B.

Arithmetic with matrices

If α is any real number and A is a matrix, then αA is the matrix where every entry of A is multiplied by α. This is called scalar multiplication because a real number is also known as a scalar, especially in this context. So, if $A=\left(a_{i j}\right)$ then $\alpha A=\left(\alpha a_{i j}\right)$.

$$
\text { Example: } \quad(1 / 2)\left(\begin{array}{rr}
2 & 4 \\
-1 & 6
\end{array}\right)=\left(\begin{array}{cc}
1 & 2 \\
-1 / 2 & 3
\end{array}\right)
$$

If A and B are both $n \times k$ matrices then $A+B$ is the matrix in which every entry of A is added to the corresponding entry of B. So, if $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ then $A+B=\left(a_{i j}+b_{i j}\right)$.

Arithmetic with matrices

If α is any real number and A is a matrix, then αA is the matrix where every entry of A is multiplied by α. This is called scalar multiplication because a real number is also known as a scalar, especially in this context. So, if $A=\left(a_{i j}\right)$ then $\alpha A=\left(\alpha a_{i j}\right)$.

$$
\text { Example: } \quad(1 / 2)\left(\begin{array}{rr}
2 & 4 \\
-1 & 6
\end{array}\right)=\left(\begin{array}{cc}
1 & 2 \\
-1 / 2 & 3
\end{array}\right)
$$

If A and B are both $n \times k$ matrices then $A+B$ is the matrix in which every entry of A is added to the corresponding entry of B. So, if $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ then $A+B=\left(a_{i j}+b_{i j}\right)$.

Example: $\quad\left(\begin{array}{rr}2 & 4 \\ -1 & 6\end{array}\right)+\left(\begin{array}{rr}-3 & 1 \\ 5 & 2\end{array}\right)=\left(\begin{array}{rr}-1 & 5 \\ 4 & 8\end{array}\right)$

Arithmetic with matrices

If α is any real number and A is a matrix, then αA is the matrix where every entry of A is multiplied by α. This is called scalar multiplication because a real number is also known as a scalar, especially in this context. So, if $A=\left(a_{i j}\right)$ then $\alpha A=\left(\alpha a_{i j}\right)$.

$$
\text { Example: } \quad(1 / 2)\left(\begin{array}{rr}
2 & 4 \\
-1 & 6
\end{array}\right)=\left(\begin{array}{cc}
1 & 2 \\
-1 / 2 & 3
\end{array}\right)
$$

If A and B are both $n \times k$ matrices then $A+B$ is the matrix in which every entry of A is added to the corresponding entry of B. So, if $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ then $A+B=\left(a_{i j}+b_{i j}\right)$.

$$
\text { Example: } \quad\left(\begin{array}{rr}
2 & 4 \\
-1 & 6
\end{array}\right)+\left(\begin{array}{rr}
-3 & 1 \\
5 & 2
\end{array}\right)=\left(\begin{array}{rr}
-1 & 5 \\
4 & 8
\end{array}\right)
$$

Note: you cannot add matrices that are differnt sizes. If A is $n \times k$ then you can add $A+B$ only if B is also $n \times k$

Multiplying matrices

Multiplying two matrices is a bit complicated so we will start with the simplest case: A row vector $\overrightarrow{\mathbf{a}}$ times a column vector \mathbf{b}.

Multiplying matrices

Multiplying two matrices is a bit complicated so we will start with the simplest case: A row vector $\overrightarrow{\mathbf{a}}$ times a column vector \mathbf{b}.

$$
\overrightarrow{\mathbf{a}} \mathbf{b}=\left(\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{k}
\end{array}\right)\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{k}
\end{array}\right)=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{k} b_{k}
$$

Multiplying matrices

Multiplying two matrices is a bit complicated so we will start with the simplest case: A row vector $\overrightarrow{\mathbf{a}}$ times a column vector \mathbf{b}.

$$
\overrightarrow{\mathbf{a}} \mathbf{b}=\left(\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{k}
\end{array}\right)\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{k}
\end{array}\right)=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{k} b_{k}
$$

For example: $\quad\left(\begin{array}{rrrr}3 & 2 & -1 & 0\end{array}\right)\left(\begin{array}{r}2 \\ 1 \\ 4 \\ -3\end{array}\right)=6+2+(-4)+0=4$

Multiplying matrices

Multiplying two matrices is a bit complicated so we will start with the simplest case: A row vector $\overrightarrow{\mathbf{a}}$ times a column vector \mathbf{b}.

$$
\overrightarrow{\mathbf{a}} \mathbf{b}=\left(\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{k}
\end{array}\right)\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{k}
\end{array}\right)=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{k} b_{k}
$$

For example: $\quad\left(\begin{array}{rrrr}3 & 2 & -1 & 0\end{array}\right)\left(\begin{array}{r}2 \\ 1 \\ 4 \\ -3\end{array}\right)=6+2+(-4)+0=4$
Note that the result is a number, or it can be viewed as a 1×1 matrix. Next case: an $n \times k$ matrix times a $k \times 1$ column vector. In this case each row of the first matrix is multiplied by the column vector.

$$
\text { So: } A \mathbf{b}=\left(\begin{array}{c}
\overrightarrow{\mathbf{a}}_{1} \\
\overrightarrow{\mathbf{a}}_{2} \\
\vdots \\
\overrightarrow{\mathbf{a}}_{n}
\end{array}\right) \mathbf{b}=\left(\begin{array}{c}
\overrightarrow{\mathbf{a}}_{1} \mathbf{b} \\
\overrightarrow{\mathbf{a}}_{2} \mathbf{b} \\
\vdots \\
\overrightarrow{\mathbf{a}}_{n} \mathbf{b}
\end{array}\right)
$$

So: $A \mathbf{b}=\left(\begin{array}{c}\overrightarrow{\mathbf{a}}_{1} \\ \overrightarrow{\mathbf{a}}_{2} \\ \vdots \\ \overrightarrow{\mathbf{a}}_{n}\end{array}\right) \mathbf{b}=\left(\begin{array}{c}\overrightarrow{\mathbf{a}}_{1} \mathbf{b} \\ \overrightarrow{\mathbf{a}}_{2} \mathbf{b} \\ \vdots \\ \overrightarrow{\mathbf{a}}_{n} \mathbf{b}\end{array}\right)$
For example: $\quad\left(\begin{array}{rrr}2 & 3 & -1 \\ 1 & -2 & 3\end{array}\right)\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)=\binom{6+6-1}{3-4+3}=\binom{11}{2}$

$$
\begin{aligned}
& \left.\qquad \begin{array}{l}
\text { So: } A \mathbf{b}=\left(\begin{array}{c}
\overrightarrow{\mathbf{a}}_{1} \\
\overrightarrow{\mathbf{a}}_{2} \\
\vdots \\
\overrightarrow{\mathbf{a}}_{n}
\end{array}\right) \mathbf{b}=\left(\begin{array}{c}
\overrightarrow{\mathbf{a}}_{1} \mathbf{b} \\
\overrightarrow{\mathbf{a}}_{2} \mathbf{b} \\
\vdots \\
\overrightarrow{\mathbf{a}}_{n} \mathbf{b}
\end{array}\right) \\
\text { For example: } \quad\left(\begin{array}{rrr}
2 & 3 & -1 \\
1 & -2 & 3
\end{array}\right)\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right)=\binom{6+6-1}{3-4+3}=\binom{11}{2}
\end{array}, . \begin{array}{l}
\end{array}\right)
\end{aligned}
$$

Note that the product is a single column whose height is the same as that of first matrix. That is, an $n \times k$ times a $k \times 1$ is an $n \times 1$.

$$
\begin{aligned}
& \text { So: } A \mathbf{b}=\left(\begin{array}{c}
\overrightarrow{\mathbf{a}}_{1} \\
\overrightarrow{\mathbf{a}}_{2} \\
\vdots \\
\overrightarrow{\mathbf{a}}_{n}
\end{array}\right) \mathbf{b}=\left(\begin{array}{c}
\overrightarrow{\mathbf{a}}_{1} \mathbf{b} \\
\overrightarrow{\mathbf{a}}_{2} \mathbf{b} \\
\vdots \\
\overrightarrow{\mathbf{a}}_{n} \mathbf{b}
\end{array}\right) \\
& \text { For example: } \quad\left(\begin{array}{rrr}
2 & 3 & -1 \\
1 & -2 & 3
\end{array}\right)\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right)=\binom{6+6-1}{3-4+3}=\binom{11}{2}
\end{aligned}
$$

Note that the product is a single column whose height is the same as that of first matrix. That is, an $n \times k$ times a $k \times 1$ is an $n \times 1$. General case: an $n \times k$ matrix times a $k \times m$ matrix.

$$
\begin{aligned}
& \text { So: } A \mathbf{b}=\left(\begin{array}{c}
\overrightarrow{\mathbf{a}}_{1} \\
\overrightarrow{\mathbf{a}}_{2} \\
\vdots \\
\overrightarrow{\mathbf{a}}_{n}
\end{array}\right) \mathbf{b}=\left(\begin{array}{c}
\overrightarrow{\mathbf{a}}_{1} \mathbf{b} \\
\overrightarrow{\mathbf{a}}_{2} \mathbf{b} \\
\vdots \\
\overrightarrow{\mathbf{a}}_{n} \mathbf{b}
\end{array}\right) \\
& \text { For example: } \quad\left(\begin{array}{rrr}
2 & 3 & -1 \\
1 & -2 & 3
\end{array}\right)\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right)=\binom{6+6-1}{3-4+3}=\binom{11}{2}
\end{aligned}
$$

Note that the product is a single column whose height is the same as that of first matrix. That is, an $n \times k$ times a $k \times 1$ is an $n \times 1$.
General case: an $n \times k$ matrix times a $k \times m$ matrix. Here we apply the previous case, multiplying the first matrix by each column of the second, then arrange the resulting columns side by side:

$$
\begin{aligned}
& \text { So: } A \mathbf{b}=\left(\begin{array}{c}
\overrightarrow{\mathbf{a}}_{1} \\
\overrightarrow{\mathbf{a}}_{2} \\
\vdots \\
\overrightarrow{\mathbf{a}}_{n}
\end{array}\right) \mathbf{b}=\left(\begin{array}{c}
\overrightarrow{\mathbf{a}}_{1} \mathbf{b} \\
\overrightarrow{\mathbf{a}}_{2} \mathbf{b} \\
\vdots \\
\overrightarrow{\mathbf{a}}_{n} \mathbf{b}
\end{array}\right) \\
& \text { For example: } \quad\left(\begin{array}{rrr}
2 & 3 & -1 \\
1 & -2 & 3
\end{array}\right)\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right)=\binom{6+6-1}{3-4+3}=\binom{11}{2}
\end{aligned}
$$

Note that the product is a single column whose height is the same as that of first matrix. That is, an $n \times k$ times a $k \times 1$ is an $n \times 1$.
General case: an $n \times k$ matrix times a $k \times m$ matrix. Here we apply the previous case, multiplying the first matrix by each column of the second, then arrange the resulting columns side by side:
If A is $n \times k$ and B is $k \times m$ then: $\quad A B=\left(\begin{array}{llll}A \mathbf{b}_{1} & A \mathbf{b}_{2} & \cdots & A \mathbf{b}_{m}\end{array}\right)$

For example

$$
\begin{aligned}
\left(\begin{array}{rr}
2 & 3 \\
1 & 2 \\
0 & -1
\end{array}\right) & \left(\begin{array}{rr}
1 & -1 \\
2 & 2
\end{array}\right) \\
& =\left(\left(\begin{array}{rr}
2 & 3 \\
1 & 2 \\
0 & -1
\end{array}\right)\binom{1}{2} \quad\left(\begin{array}{rr}
2 & 3 \\
1 & 2 \\
0 & -1
\end{array}\right)\binom{-1}{2}\right) \\
& =\left(\begin{array}{rr}
8 & 4 \\
5 & 3 \\
-2 & -2
\end{array}\right)
\end{aligned}
$$

For example

$$
\begin{aligned}
\left(\begin{array}{rr}
2 & 3 \\
1 & 2 \\
0 & -1
\end{array}\right) & \left(\begin{array}{rr}
1 & -1 \\
2 & 2
\end{array}\right) \\
& =\left(\left(\begin{array}{rr}
2 & 3 \\
1 & 2 \\
0 & -1
\end{array}\right)\binom{1}{2}\left(\begin{array}{rr}
2 & 3 \\
1 & 2 \\
0 & -1
\end{array}\right)\binom{-1}{2}\right) \\
& =\left(\begin{array}{rr}
8 & 4 \\
5 & 3 \\
-2 & -2
\end{array}\right)
\end{aligned}
$$

Note: In order to be able to multiply two matrices, the width of the first (row length) must match the height of the second (column height).

For example

$$
\begin{aligned}
\left(\begin{array}{rr}
2 & 3 \\
1 & 2 \\
0 & -1
\end{array}\right) & \left(\begin{array}{rr}
1 & -1 \\
2 & 2
\end{array}\right) \\
& =\left(\left(\begin{array}{rr}
2 & 3 \\
1 & 2 \\
0 & -1
\end{array}\right)\binom{1}{2}\left(\begin{array}{rr}
2 & 3 \\
1 & 2 \\
0 & -1
\end{array}\right)\binom{-1}{2}\right) \\
& =\left(\begin{array}{rr}
8 & 4 \\
5 & 3 \\
-2 & -2
\end{array}\right)
\end{aligned}
$$

Note: In order to be able to multiply two matrices, the width of the first (row length) must match the height of the second (column height). If A is an $n \times k$ matrix and B is $k \times m$ then we can multiply $A B$ and the result is $n \times m$.

For example

$$
\begin{aligned}
\left(\begin{array}{rr}
2 & 3 \\
1 & 2 \\
0 & -1
\end{array}\right) & \left(\begin{array}{rr}
1 & -1 \\
2 & 2
\end{array}\right) \\
& =\left(\left(\begin{array}{rr}
2 & 3 \\
1 & 2 \\
0 & -1
\end{array}\right)\binom{1}{2} \quad\left(\begin{array}{rr}
2 & 3 \\
1 & 2 \\
0 & -1
\end{array}\right)\binom{-1}{2}\right) \\
& =\left(\begin{array}{rr}
8 & 4 \\
5 & 3 \\
-2 & -2
\end{array}\right)
\end{aligned}
$$

Note: In order to be able to multiply two matrices, the width of the first (row length) must match the height of the second (column height).
If A is an $n \times k$ matrix and B is $k \times m$ then we can multiply $A B$ and the result is $n \times m$. We can multiply $B A$ only if $m=n$, the result may be an entirely different size from $A B$.

For example

$$
\begin{aligned}
\left(\begin{array}{rr}
2 & 3 \\
1 & 2 \\
0 & -1
\end{array}\right) & \left(\begin{array}{rr}
1 & -1 \\
2 & 2
\end{array}\right) \\
& =\left(\left(\begin{array}{rr}
2 & 3 \\
1 & 2 \\
0 & -1
\end{array}\right)\binom{1}{2} \quad\left(\begin{array}{rr}
2 & 3 \\
1 & 2 \\
0 & -1
\end{array}\right)\binom{-1}{2}\right) \\
& =\left(\begin{array}{rr}
8 & 4 \\
5 & 3 \\
-2 & -2
\end{array}\right)
\end{aligned}
$$

Note: In order to be able to multiply two matrices, the width of the first (row length) must match the height of the second (column height).
If A is an $n \times k$ matrix and B is $k \times m$ then we can multiply $A B$ and the result is $n \times m$. We can multiply $B A$ only if $m=n$, the result may be an entirely different size from $A B$. Even if they are the same size, $A B$ and $B A$ are typically not equal.

Some special cases.

The product of a row vector times a column vector is a single number. This is often called the inner product of the two vectors.

Some special cases.

The product of a row vector times a column vector is a single number.
This is often called the inner product of the two vectors.
A matrix times a column is another column. An important example of this is a system of equations.

Some special cases.

The product of a row vector times a column vector is a single number.
This is often called the inner product of the two vectors.
A matrix times a column is another column. An important example of this is a system of equations. If we write

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 k} \\
a_{21} & a_{22} & \cdots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{k n}
\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{k}
\end{array}\right) \quad \text { and } \quad \mathbf{b}=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)
$$

Some special cases.

The product of a row vector times a column vector is a single number.
This is often called the inner product of the two vectors.
A matrix times a column is another column. An important example of this is a system of equations. If we write

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 k} \\
a_{21} & a_{22} & \cdots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{k n}
\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{k}
\end{array}\right) \quad \text { and } \quad \mathbf{b}=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)
$$

Then the equation $A \mathbf{x}=\mathbf{b}$ is the same as

$$
A \mathbf{x}=\left(\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 k} x_{k} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 k} x_{k} \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n k} x_{k}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)=\mathbf{b}
$$

Equating the positions in $A \mathbf{x}$ to the corresponding positions in \mathbf{b} gives us a system of equations.

Equating the positions in $A \mathbf{x}$ to the corresponding positions in \mathbf{b} gives us a system of equations.
Another special case is confusing at first: a column vector times a row vector.

Equating the positions in $A \mathbf{x}$ to the corresponding positions in \mathbf{b} gives us a system of equations.
Another special case is confusing at first: a column vector times a row vector. This can always be done: as it is an $n \times 1$ times a $1 \times k$.

Equating the positions in $A \mathbf{x}$ to the corresponding positions in \mathbf{b} gives us a system of equations.
Another special case is confusing at first: a column vector times a row vector. This can always be done: as it is an $n \times 1$ times a $1 \times k$. The rows of the first have length 1 as do the columns of the second.

Equating the positions in $A \mathbf{x}$ to the corresponding positions in \mathbf{b} gives us a system of equations.
Another special case is confusing at first: a column vector times a row vector. This can always be done: as it is an $n \times 1$ times a $1 \times k$. The rows of the first have length 1 as do the columns of the second. The result will be $n \times k$:

$$
\mathbf{a} \overrightarrow{\mathbf{b}}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)\left(\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{k}
\end{array}\right)=\left(\begin{array}{cccc}
a_{1} b_{1} & a_{1} b_{2} & \cdots & a_{1} b_{k} \\
a_{2} b_{1} & a_{2} b_{2} & \cdots & a_{2} b_{k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n} b_{1} & a_{n} b_{2} & \cdots & a_{n} b_{k}
\end{array}\right)
$$

This is sometimes called the outer product of a and $\overrightarrow{\mathbf{b}}$.

