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Homogeneous Systems

A system of equations in standard form is called homogeneous if the right
side of every equation is 0.

The last column of its augmented matrix is a
column of zeros. Since none of the EROs will change these zeros to
something else, the echelon form will never have a row with zeros in the
system part and nonzero in the augmented part. In fact, every
homogeneous system has at least one solution, namely (0, 0, . . . , 0).

Standard notations for matrices

We can address the elements (or entries) in a matrix by specifying the row
and the column of that entry (always in that order). If we say the ij-entry,
we mean the entry in row i and column j. For example, an n× k matrix
with unspecified entries would look like

A =


a11 a12 · · · a1k
a21 a22 · · · a2k
...

...
. . .

...
an1 an2 · · · ank


Thus, the ij-entry is aij and this is sometimes abbreviated A = (aij).
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In fact, if we state that B and C are matrices and talk about bij or cij , we
will understand that bij are entries of B and cij are entries of C.

If we then write, for example D = (bij + cij), this will mean we have
created a new matrix D whose entries are the sums of corresponding
entries in B and C.

Matrices with only one row (1× k matrices) or only one column (n× 1
matrices) are called vectors. The one-row matrices are row vectors and
the one-column matrices are column vectors.

An important example of a row vector is the solution of a system. As
we’ve seen, the solution of

2x1 − x2 = 3

3x1 + 2x2 = 1

is (1,−1). But from now on, we will allow a solution to be written as a

vector:

 1
−1

 or
 1 −1

 instead of (1,−1).
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Our book uses the following default notations: capital letters represent
matrices. Bold lower case letters represent column vectors and an arrow
over a lower case letter represents a row vector.

Examples:

A =


2 −1 0
3 2 1
0 5 2

 , a1 =


2
3
0

 , a⃗2 = (3, 2, 1) or
 3 2 1


The above illustrates a convention our book uses: If a matrix is specified,
the corresponding bold lower case letter with a subscript represents the
corresponding column of the matrix. If there is an arrow over the letter,
that represents the corresponding row. Finally, we can represent a matrix
as a list of column vectors or a stack of row vectors as follows

A = (a1,a2, . . . ,ak), or
 a1 a2 · · · ak

 , B =


b⃗1

b⃗2

...

b⃗n


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Arithmetic with matrices

If α is any real number and A is a matrix, then αA is the matrix where
every entry of A is multiplied by α.

This is called scalar multiplication
because a real number is also known as a scalar, especially in this context.
So, if A = (aij) then αA = (αaij).

Example: (1/2)

 2 4
−1 6

 =

 1 2
−1/2 3


If A and B are both n× k matrices then A+B is the matrix in which
every entry of A is added to the corresponding entry of B. So, if
A = (aij) and B = (bij) then A+B = (aij + bij).

Example:

 2 4
−1 6

+

 −3 1
5 2

 =

 −1 5
4 8


Note: you cannot add matrices that are differnt sizes. If A is n× k then
you can add A+B only if B is also n× k
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every entry of A is multiplied by α. This is called scalar multiplication
because a real number is also known as a scalar, especially in this context.
So, if A = (aij) then αA = (αaij).

Example: (1/2)
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Multiplying matrices

Multiplying two matrices is a bit complicated so we will start with the
simplest case: A row vector a⃗ times a column vector b.

a⃗b =
 a1 a2 · · · ak




b1
b2
...
bk

 = a1b1 + a2b2 + · · ·+ akbk

For example:
 3 2 −1 0




2
1
4

−3

 = 6 + 2 + (−4) + 0 = 4

Note that the result is a number, or it can be viewed as a 1× 1 matrix.

Next case: an n× k matrix times a k × 1 column vector. In this case each
row of the first matrix is multiplied by the column vector.
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So: Ab =


a⃗1
a⃗2
...
a⃗n

b =


a⃗1b
a⃗2b
...

a⃗nb



For example:

 2 3 −1
1 −2 3




3
2
1

 =

 6 + 6− 1
3− 4 + 3

 =

 11
2


Note that the product is a single column whose height is the same as that
of first matrix. That is, an n× k times a k × 1 is an n× 1.

General case: an n× k matrix times a k ×m matrix. Here we apply the
previous case, multiplying the first matrix by each column of the second,
then arrange the resulting columns side by side:

If A is n× k and B is k ×m then: AB =
 Ab1 Ab2 · · · Abm


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For example
2 3
1 2
0 −1


 1 −1

2 2


=




2 3
1 2
0 −1


 1

2




2 3
1 2
0 −1


 −1

2




=


8 4
5 3

−2 −2



Note: In order to be able to multiply two matrices, the width of the first
(row length) must match the height of the second (column height).

If A is an n× k matrix and B is k ×m then we can multiply AB and the
result is n×m. We can multiply BA only if m = n, the result may be an
entirely different size from AB. Even if they are the same size, AB and
BA are typically not equal.
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 −1

2




=


8 4
5 3

−2 −2


Note: In order to be able to multiply two matrices, the width of the first
(row length) must match the height of the second (column height).

If A is an n× k matrix and B is k ×m then we can multiply AB and the
result is n×m. We can multiply BA only if m = n, the result may be an
entirely different size from AB.

Even if they are the same size, AB and
BA are typically not equal.
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Some special cases.

The product of a row vector times a column vector is a single number.
This is often called the inner product of the two vectors.

A matrix times a column is another column. An important example of this
is a system of equations. If we write

A =


a11 a12 · · · a1k
a21 a22 · · · a2k
...

...
. . .

...
an1 an2 · · · akn

 , x =


x1
x2
...
xk

 and b =


b1
b2
...
bn


Then the equation Ax = b is the same as

Ax =


a11x1 + a12x2 + · · ·+ a1kxk
a21x1 + a22x2 + · · ·+ a2kxk

...
an1x1 + an2x2 + · · ·+ ankxk

 =


b1
b2
...
bn

 = b
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Equating the positions in Ax to the corresponding positions in b gives us
a system of equations.

Another special case is confusing at first: a column vector times a row
vector. This can always be done: as it is an n× 1 times a 1× k. The rows
of the first have length 1 as do the columns of the second. The result will
be n× k:

ab⃗ =


a1
a2
...

an


 b1 b2 · · · bk

 =


a1b1 a1b2 · · · a1bk
a2b1 a2b2 · · · a2bk
...

...
. . .

...
anb1 anb2 · · · anbk


This is sometimes called the outer product of a and b⃗.

10 / 10



Equating the positions in Ax to the corresponding positions in b gives us
a system of equations.

Another special case is confusing at first: a column vector times a row
vector.

This can always be done: as it is an n× 1 times a 1× k. The rows
of the first have length 1 as do the columns of the second. The result will
be n× k:

ab⃗ =


a1
a2
...

an


 b1 b2 · · · bk

 =


a1b1 a1b2 · · · a1bk
a2b1 a2b2 · · · a2bk
...

...
. . .

...
anb1 anb2 · · · anbk


This is sometimes called the outer product of a and b⃗.

10 / 10



Equating the positions in Ax to the corresponding positions in b gives us
a system of equations.

Another special case is confusing at first: a column vector times a row
vector. This can always be done: as it is an n× 1 times a 1× k.

The rows
of the first have length 1 as do the columns of the second. The result will
be n× k:

ab⃗ =


a1
a2
...

an


 b1 b2 · · · bk

 =


a1b1 a1b2 · · · a1bk
a2b1 a2b2 · · · a2bk
...

...
. . .

...
anb1 anb2 · · · anbk


This is sometimes called the outer product of a and b⃗.

10 / 10



Equating the positions in Ax to the corresponding positions in b gives us
a system of equations.

Another special case is confusing at first: a column vector times a row
vector. This can always be done: as it is an n× 1 times a 1× k. The rows
of the first have length 1 as do the columns of the second.

The result will
be n× k:

ab⃗ =


a1
a2
...

an


 b1 b2 · · · bk

 =


a1b1 a1b2 · · · a1bk
a2b1 a2b2 · · · a2bk
...

...
. . .

...
anb1 anb2 · · · anbk


This is sometimes called the outer product of a and b⃗.

10 / 10



Equating the positions in Ax to the corresponding positions in b gives us
a system of equations.

Another special case is confusing at first: a column vector times a row
vector. This can always be done: as it is an n× 1 times a 1× k. The rows
of the first have length 1 as do the columns of the second. The result will
be n× k:

ab⃗ =


a1
a2
...

an


 b1 b2 · · · bk

 =


a1b1 a1b2 · · · a1bk
a2b1 a2b2 · · · a2bk
...

...
. . .

...
anb1 anb2 · · · anbk


This is sometimes called the outer product of a and b⃗.

10 / 10


