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Variables will typically be denoted by the letters x, y or z.

Often,
especially if we need more than three variables, we will use subscripts: x1,
x2, x3, . . . .

Assuming the variables are x1 through xk, a linear equation is one that
can be put into the following form

a1x1 + a2x2 + · · ·+ akxk = b

where a1 through ak and b are numbers. Some examples are

x1 + 2x2 = 6 + 3x3 −→ 1x1 + 2x2 + (−3)x3 = 6

2(x1 + x3)− 4 = 0 −→ 2x1 + 0x2 + 2x3 = 4

The following are not linear

ex1 + 2x2 − 3x3 = 6

(x1 + x2)
2 = 4
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Note that sometimes linear equations can help us with nonlinear
equations.

For example, the nonlinear ex1 + 2x2 − 3x3 = 6 becomes the
linear y1 + 2y2 − 3y3 = 6 if we change variables with y1 = ex1 , y2 = x2,
y3 = x3. However, we must remember that y1 must be positive.

Also, the nonlinear (x1 + x2)
2 = 4 is equivalent to two linear equations:

x1 + x2 = 2 or x1 + x2 = −2. Howvever, we must remember that they
cannot both be true at the same time.

A system of linear equations (“system” for short) is any number of
simultaneous linear equations. An example is

2x1 + 3x2 − 4x3 = 0

3x1 + 4x2 = 2

The above is referred to as a 2× 3 system: 2 equations and 3 variables.
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A solution of an n× k system with variables x1 through xk is a k-tuple of
numbers (s1, s2, . . . , sk) such that the substitutions x1 = s1 through
xk = sk make all the equations true.

Thus,

(6,−4, 0) and (−10, 8, 1)

are solutions of the system on the previous slide:

2x1 + 3x2 − 4x3 = 0

3x1 + 4x2 = 2

We can get an idea as to what is possible for solutions by considering
2× 2 systems:

S1:

{
2x1 − x2 = 3

3x1 + 2x2 = 1

}
S2:

{
2x1 − x2 = 3

4x1 − 2x2 = 6

}
S3:

{
2x1 − x2 = 3

4x1 − 2x2 = 0

}
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In all 3 systems, the first equation is the same as y = 2x− 3. The graph
of that is a line with slope 2 and y-intercept −3.

In system S1, the second
equation graphs as a line with slope −3/2. Therefore, the two lines cross,
and the crossing point (1,−1) is the only solution of the system.

In system S2, the second equation is just the first multiplied by 2. So its
graph is the same line. Therefore, every point on that line (e.g., (0,−3),
(3/2, 0), etc.) is a solution of the system.

In system S3, the second equation represents a line with the same slope
but y-intercept 0. Therefore, the two lines are parallel and never cross, so
the system has no solutions.

We will see that this pattern holds for any linear system: there is either no
solution, 1 solution, or infinitely many solutions.
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Two systems are called equivalent if they have the same solutions.

The
standard methods for solving a system all rely on performing
transformations on the system that keep the solutions the same. The most
efficient methods of solution all start with rewriting the equations into
standard form: All terms of the form ajxj are moved to the left side of the
equal sign and all constant terms are moved to the right side. Then like
terms are combined, and the variables written in order. The following is in
standard form:

2x1 + 4x2 − 6x3 = 2

3x1 + 5x2 − 5x3 = 0

−2x1 − 3x2 + 3x3 = 4
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Things you can do that leave the solutions unchanged:

1. Write the equations in a different order.

2. Multiply both sides of any equation by a nonzero number. The
previous system is equivalent to

x1 + 2x2 − 3x3 = 1 [(1/2)E1]

3x1 + 5x2 − 5x3 = 0

−2x1 − 3x2 + 3x3 = 4

3. Add a multiple of one equation to another (replacing the second one).
The following is equivalent to the previous:

x1 + 2x2 − 3x3 = 1

−x2 + 4x3 = −3 [E2 − 3E1]

x2 − 3x3 = 6 [E3 + 2E1]
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If we do the third type of operation one more time we will get a
particularly useful form:

strict triangular form:

x1 + 2x2 − 3x3 = 1

−x2 + 4x3 = −3

x3 = 3 [E3 + E2]

Once we have strict triangular form we can solve the system by back
substitution.

• From the last equation: x3 = 3.

• Substitute this in the second-last equation: −x2 + 4(3) = −3 to get
x2 = 15.

• Substitute both in the first equation: x1 + 2(15)− 3(3) = 1 to get
x1 = −20.

The solution is (−20, 15, 3). Systems in strict triangular form always have
exactly one solution. Therefore, not every system can be put in this form.
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exactly one solution. Therefore, not every system can be put in this form.
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Consider the three 2× 2 systems from before:

S1:

{
2x1 − x2 = 3

3x1 + 2x2 = 1

}
S2:

{
2x1 − x2 = 3

4x1 − 2x2 = 6

}
S3:

{
2x1 − x2 = 3

4x1 − 2x2 = 0

}

Following nearly the same process from before (take 1/2 the first equation
and then adding appropriate multiples of that to the second) we get:{

x1 − 1
2x2 =

3
2

7
2x2 = −7

2

} {
x1 − 1

2x2 =
3
2

0x2 = 0

} {
x1 − 1

2x2 =
3
2

0x2 = −6

}

The back substitution method on S1 gives x2 = −1 and then
x1 − (1/2)(−1) = 3/2 gives x1 = 1 for the solution (1,−1).

However, in system S2 we cannot solve for x2: any number will satisfy the
second equation and the best we can do with the first equation is
x1 = (1/2)x2 + 3/2. This means that pairs of the form ((1/2)α+ 3/2, α).
are all solutions.

Finally, S3 has no solutions because no values of x2 make 0x2 equal to −6.

Still, the method works in that it allows us to reach these conclusions.
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Matrices associated with a system

We have a system matrix , which consists of all the numbers that are
multiplied by the variables,

and an augmented matrix , which is the system
matrix augmented with the numbers on the right side of the equations.
For the system

2x1 + 4x2 − 6x3 = 2

3x1 + 5x2 − 5x3 = 0

−2x1 − 3x2 + 3x3 = 4

the first matrix below is the augmented matrix and the second is the
system matrix:

A =


2 4 −6 2
3 5 −5 0

−2 −3 3 4

 , B =


2 4 −6
3 5 −5

−2 −3 3
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Each row corresponds to one of the equations and each column
corresponds to one of the variables.

If a system is n× k then the system
matrix has n rows and k columns and we call it an n× k matrix. The
augmented matrix has an extra column and so is n× (k + 1). The vertical
line in the augmented matrix is optional, but helps with keeping track of
things.

The elimination method we used on the system really only needs to keep
track of the numbers and their positions (i.e., which variables they are
attached to). As such, we don’t need to operate on the system: we can do
everything with just the augmented matrix. Instead of manipulating
equations we manipulate rows. We say that two augmented matrices are
equivalent if the corresponding systems are equivalent.
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Thus we can

1. Write the rows in a different order.

2. Multiply all the numbers in any row by the same nonzero number.
The previous augmented matrix is equivalent to

2 4 −6 2
3 5 −5 0

−2 −3 3 4

 (1/2)R1−−−−−→


1 2 −3 1
3 5 −5 0

−2 −3 3 4


3. Add a multiple of one row to another (replacing the second one). The

following is equivalent to the previous:

R2−3R1−−−−−→
R3+2R1


1 2 −3 1
0 −1 4 −3
0 1 −3 6
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If we proceed one more step, replacing R3 with R2 +R3 we get the
augmented matrix of a strictly triangular system:

1 2 −3 1
0 −1 4 −3
0 1 −3 6

 −−−−→
R3+R2


1 2 −3 1
0 −1 4 −3
0 0 1 3



Note: Up to here we worked downward. It is useful to now work upwards.
In fact, the following additional operations produce something called a
diagonal system:

R1+3R3−−−−−→
R2−4R3


1 2 0 10
0 −1 0 −15
0 0 1 3

 R1+2R2−−−−−→


1 0 0 −20
0 −1 0 −15
0 0 1 3


This last one produces the easy-to-solve system x1 = −20, −x2 = −15,
x3 = 3 for the solution (−20, 15, 3).
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